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SELECTED TOPICS ON SCATTERING _THEORY

PART T

RELATIVISTIC KINEMATICS AND
PRECESSION OF POLARIZATION

LECTURE 1

1) Lorentz transformations and invariants

(a) The invariant line element

It is one of the most important facts of physics that the velocity of
light, C = 2.99776 .e. X 1O1Ocm/sec, is the same in all inertial systems. This
has the consequence that jf ligﬁt is supposed to be the fastest means of
communication, all measurements involving distances must be influenced by this

fact. Indeed, this influence is expressed by the Lorentz transformations.

-

Let K and K' be two reference systems moving with constant
velocity with respect to each other. We call an "event" or a world point the

set
r
P = -ngztf (1.1)

of space~-time co-ordinates.

Let the directions of the axes of K and K' %be parallel and such

that the x and x' axes coincide and are parallel to the relative velocity
Z;ée Fig. 1.17.
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|
52 Fig. T.1

Consider two particular events P, and P, in the frame X, where

1 2

P1 = (X1y1z1t1) is sending out a light signal at time .t1 from.

v,zZ, and

the space point x1 174

P, = (gzyzzztz) is receiving this signel at time t, in the
space point x2y222.

The distance between the space points is

d = \j(xz-x1)2 + (yz-y1)2 + (z2-z1)2

but since C is a fixed constant for all inertial systems, it is also given by

d = C(tz-t1) ,
hence

| 2 2 > 2 »
(xz-x1) + (y2—y1) + (z2—z1) =G (t2—t1)



But we could heve written down the same in system K' :

) )2 (1.2")

2 1
=C (tz-t1

2 p)
T (- -
(X2 X1) + (v} y1) + (oz

with the séme constant C.

We now introduce T = ict and go over to infinitesimal distances.
We call the square of the distance between any two events which are very near to

each other

2 2 2 2
ds = czdt2 - dx - dy2 - dz = -(dx2 + dy2 + dz? + dtig)

and conclude from (I.2) and (I.2') that

ds =0 implies o ds' =0 (1.3)

I

As ds and ds' are of the same order, it follows that ds = ads' and since

K and K' are on an equal footing, ds' = ads, hence a =1 and only

a = + 1 remains for reasons of continuity. By integrating between any two
events we see that this is an invariant quentity with respect to the co-ordinate

transformations from K to X',

P 1
; , / 2 2
%ds ‘—“\/"-'( AX2+ Ay2+ AZZ+ AT 2) = \dS' = '\/—( C\x‘2+ Ay! +Az'2+ AT
: ,
. P1 P1
N N -
~— S R
K -~ systenm K' - gystem

(I.4)

The word invariant denotes one of the central ideas of the theory of
special relativity and invariants are a very convenient tool to do calculations.

We call dsz = —dxé—dyz—dz2 + czdt2 the invariant line element.
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4.

(b) Space-like and time-like distances; future and past; the light cone

We now ask two questions,

1

Given two events P, and P2 with distance % Ax, Ay, 4z, AT \.( ’
is there a system in which these two events. appear at the same time ?

H

We have then AT ' =0, but from (T.4) it follows that
2, 2 2 .2 > iy,
As® = ~(Ax% Ay + 425 0T°) = -(4x' 4y %+ a2t") £ O

AN

thus

2 system in which two events happen at the same time
can be found if and only if

(1.5)

~

ASZ = c2A t2 —-Ax2 -Ay2 -A 22 £ 0 Z;pace—like dist_ancy

—

On the other hand, we ask : can two events appear to happen at the same place

in some system X' ?

We have then

Asg = —(Ax2+Ay2+Az2+ A‘Cz) == AT =+c A"rf?’ > O

Therefore -

a system in which two events happen at the same place
can be found if ani only if

—~
—
.

<
—”

2 2 2 . 2 = . -7
A32 = A" -Ax" -—sz -Az ? 0 Ltime-—like iistano_e_/

|

Since © A s is invarient, either the one or the other happens, no metter what
the system is. We have to add the case /A s~ =0 which applies to the distance

between two events connected by a ligit signal _/_"svee (I.2) =nd (142‘)/.



Consider now all possible events with respect to a given one. Put the
co-ordinate origin into the given event O : (X=y=z=t:0) and draw two co-

ordinates (x,t) only /Fig. 1.2/

ct

A

Time-like
futhre §$
&/
NN
U
%
/U
N -
N
space~like space-like p-x
Time=like
rapt
Fig., I.2

Time~like and space-like distances,
past and future, the light cone.

The distance from the origin is given by the invariant

2 2.2 2 2 2
s =ct =X =y -2
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(i) S° =0 comnects all those events with the origin which can be

~

o . . < .
_reached by a light sign=2l, hence the cone s =0 1is
called the "light cone" and these events are said to be

on the light cone.

.- 2o . . .
(ii) 8> 0 if s » 0, the event is in  the forward light cone

if s8< 0, itis in  the backward light cone.
Clearly an event in the forward light come is later as

0, in the backward light cone it is enviiar ag O,

. 2 . . .
Since s° is an invariant, one cannot transform an event with

LA
G

s £ 0 into one with s » O, since all these trsnsformations form a cormec

continuous group.

Therefore the forward light cone contzins the absolute future, eud the
backward cone the absolute past. Only events in the backwsrd cone can have an
influence on O and O can have an influence only on events in the forward cone.
The space-like events cannot interact with O.

This is how csusality is expressed on this level of argurent.

/Remark : it finds its most direct application in quantum field thecry where
the measurement of the field st the origin and at a world point
{ 3 . ~ .o . .
P = txyzt { do not interfere, if P lies space-like. Therzfore

.

the two operators correspcnding to the fields must commute :

[_A(P1), A(PZ) \ =0 if P1 and P2 lie space-like to each other.

(1.7)

The dispersion relations are derived from this requirement;/
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Problem 3
1) Define the proper time of a moving body to be the
time shown by a clock which moves with that body. Use the invariance
of ZXSZ to establish the lifetime of a particle measured by a clock

in the lab. system.

a) if the particle moves with constant velocity

b) if the particle moves srbitrarily.

2) 1Is the light quantum a stable particle ?

Solution 1

s creation P, = (x1y1z1t1)

/

P ) D =
S ¥ decay P, (x2y222t2)

/ v
-

v

In the lab. system we find the distance between creation and decay

\ ) .
ZSSZ =C At2 - L\X2 «Ayg —Az2 but in the particles system

A82 = odﬁ £'°  since there it is ot rest

hence
> 2 , 2 : C
L AxT+AyT+ Az 2 v
At': At\/i"" 2y,) = A't 1.-(5 3 (5_-_-.5
¢ At \ \
a) ! -t = (t.~t ) { - a?
2 2717 N\ 1
tg S a————— —
b) t'-t'=& dt \!1-"3(’6)2
27" A
%

1
2658
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Solution 2 2

Suppose the K—quantum were unstable, then a lifetime should be
definable and the only invarient way to define a lifetime is to

" measure it in the rest system of the particle (i.e., by its proper
time ). Such a rest system does not exist by supposition (constancy

of c¢). Even formally

: 2

3 3 —_ Tt |- - . —
lifetime = t2 t1 (t2 t1) 1 (’3
. I
=0

/
observed lifetime
in the lab. = c0

Thus té - t; = Q.00 = undetermined.

Therefore the question is senseless L?or all particles with m =0 _7

(¢) The Lorentz transformation

We now derive the transformation formula from K to K' where K!
moves with constant velocity v as indicated in Fig. I.1. The invariance of

A 32 requires /__’L = i0_§7

AS? = -(L\X2+Ay2+ L\zz+ AT}2) = —(Ax’2+ Ay'2+Az'?+ Afb‘z) .

If we exclude translations in the xyzT -space, the only transformations leaving
2

AS” invariant are rotstions. We are not interested in space rotations and in

fact Fig. I.1 singles out the rotation in the =xT -plane, since only x and the

time are involved, y and z staying constant.

Let <L be the angle of rotation. The transformation must be of the form

X =x' cosol = T' sind B

=y' and z = 2z' will not be mentione_cg-
T =x' sinl + T' cossl : .

(1.8)



9.

We now determine of by considering an example : we are in K and
observe the origin of K!' moving with velocity v in our positive x-direction.

Its motion in our system is described by x and T , in the system XK' by

x''=0 and T '. Hence
X =-7' sind
T= 7" cos o
X v .
:C= s = - tgo =-1{'3
Now
cos o = ] = ! = K
\/‘I+tg20k \{1-(52
tg oL i
sin™ = g = 1(5 =i(5x
2
\11+tg2<>( \/ —(5
hence
X =

szg - i'iCt‘FK = K(X'+(bct')
_ix'irqx - dedet'y = ((ct'+(5X‘) (1.9)

Lorentz transformation

ct

1]

Compare Fig. I.1, which gives the meaning of
this transformation.
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Problem :

%) Use (I.9) and the fact that any vector can be decomposed into a
component in a given direction and another component perpendicular
to it, in order to establish the most general form of the Lorentz
transformation between two inertial systems K and K' where K'

moves with

il

o<y

4

with respect to K.

4) Discuss this general transformation .

a) specialize it to retain (I.9);

o’

) solve it for the primed co-ordinates and verify the solution;
c)

go to the pon-relativistic limit;

d) derive the Lorentz comtraction and time dilatation from the
general formula. '

Solution 3)

‘ - ‘
We decompose x into a component parallel to !(5 _ and one perpendicular

-
to P :
—=, >y = Pex —! @3{
'=x +x = (5' — (x - [ -=)
hoL 2 b e
\‘_\ \ P N A
X =
x* X
i L
To _§: we apply (I.9) whereas ‘Qi remains untransformed
— - -
X = 5(x‘+ cfhtt)
1 L :
( Fsi ) (ct! Q‘ﬂ)
— 1 - —_ Y .
ct = K(Ct +pxl ) = g (ct kpx )
- -
x = x!
[ L

1656



11.

hence

(1.10)

-
e 9
o/
> X

MW

2658
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Solution 4 2

vy=y'
ot = f(ct' +(bx')
x =x'+ (5&(-%% (6X' + ct')

b) The K system moves with -(?) as seen from X'. Hence we must

interchange the primed co-ordlnates with the unprimed ones and

reverse th: sign of (5
- -
(‘ [ X+ (Sx - Ct]
ct! = K[ct —(BX}

Verification :

after some rearrangement :

_x+(5xL (\—F—?;K2+-(5—(5-2—;§—Z]

\ (Y+1)

0
+ ct2{1 + E—-g- ] (5})( . geeede
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¢) the non-relativistic limit is (Y= 1; (3 = 0)

NI N I
x = x' + vt! v:(ﬁc
7
t =1t + —
2
c

which is not yet the Galilei transformation (t = 1').

r
(=24
A

cdt = K[cdt‘ + Tde']

—
If we wish to know how in K appears a length element dx' which
is at rest in K', we must measure the position of its end points

in K simaltaneously, hence for this case

cdt =0 or cdt' = —"de'

Inserted into the first equation

- s
-

— — g X 7

dx =dx'+(55 -K-ﬁ-wl (odx'
dt=0

-> - > ¥ "‘"‘f'

dz =dx'-(5'w'((x'ax>3

. dt=0

N

generalised [orentz contraction

PZX)_dX'
oy

if (b\\d?c' we find dx'(1 =

2658
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If we wish to know how a clock at rest in the K' system appears

) o=
in the K-system, we must pus dx' = O, hence

—

- N +¢
z {/5 aodu

il

cdt

il

!\ cdt! = {t = K‘d‘t’ . time dilatation.

Introducing this in the first ejuation gives

-

...A’, -
dx = (L cdt = vdt

which only sgys that the clock moves in K with velocity v.
(i) The transformation of velocitics
With formula (LT’O) from problem 3 we obtain
N N i
Cdx = dx o+ oy f« hax' + cdt'}
[0 | v 1 \Af
cdt = % | ecdt' + (Haxt)
\ { 4
and by dividing
RN - ~ N
=S A \ ‘{(' - e
-~ - 4 ;s ! marmiom AQ A ~ i
| _-3- ) drt o+ 3 | \6,4'1.(\\)4}{) + cdt! |
cdt ¢ S S
© }S“[cdt- + (haxt )l
\ \
or
. ~ SV ~
_ i ) , —-% - d Vv!
5 v +g¢‘6%——tm(x\v')+cj v+ Ty (—-—7—)-{- 1)
-3 \ g+ . ¢+ < (I 14)
V= BV = T ) <
w1 e 2R YBE -\
0L ¢ T ct |

2658
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where ? is the velocity of a point (e.g., a particle) in system K (e.g., the
laboratory system), T oits velocity in K' (e.g., the centre-of-mass system of
a reaction) and ?f = cv(i is the velocity of the system K' as seen from K
(the velocity of the CM-system seen from the lab. system).‘ One sees that the
velocities add in a very complicated way. Assume them to be parallel, then no

change in the direction takes place and we have

7Y
+1

1 1
. vl o+ 7 v +V5‘
- Vv!
K(T + —"?:-)
c

gives

thus

v=0 if V=-v' and v £ c¢ always.

—

Choose the co-ordinates such that (5 points in the positive

x-direction and that v' lies in the x'y' and xy planes.

Lj 1
TN szx

VV
>

W
/V
%'/( )@I > X'

Fig. 1.3

Ave

! i 1
2658 Transformation of angles
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Then (I.11) reads

By

v'coso' + <3 v'cose!

V =V Cose =
hid

v'sine!'

'k +/-C§ v'cos6! |

v = vsine =
y

v'sine!

tge =

K[v'cos@' + (Bc]

_ +Y:(§KC B K[V'COS@' + (501 »
¥ [1 +f-§ v'cos@'}. '

~: K\j +é’ v'cog®!' ]

(1.12)

which gives the transformation of the angles of a velocity.
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IECTURE 2

: (e) Forr-vectors and invariants

All quantities consisting of a set of 4 rumbers which transform under

a Lorentz transformation exactly as the components of

ds = S cdt, dx, dy, dz %

L

according to (I.10), are called four vectors.

“ We required that the Lorentz transformation sheculd leeve the lire
element
2 2 2 2
ds° = -dx° - ay° - az° + codt
invariant. Consequently, if four vectors transform like ds, then the scalar

product of the four vector P with itself

v
1t

%'Pt’Px’Py’?z }

"d
i

PP - P - P4 Pt
X v z 1

is an invariant and then if P and Q are four vecltors :
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hence

)2 2

(P+Q)° = P° + 2pPQ + Q2 = P'2 + 2P'Q' + Q'2 ’

PQ = -p.q - pyqy - P4, * Pa, = invariant (1.13)

Some of the most important four vectors are :

the four-dimensional radius vector
N .
X:{Ct,x} ,
the energy-momentum vector (four-momentum)

[N
P= % g, ol } ; - m202 (time-like)

P
E’ ;= (1-(32)-?]

-
V=oc ax =-§§::SCA/, c({b } H V-2 = c2 (time-like); T'= prcper tiis

the four velocity / b=

the current vector

J = ch,g_\)r} ;s I = ¥ = gicz (time-like)

( g 0 = density in the rest system of the volume element considered).

Some words about transformation properties seem to be necessary since

it is relatively easy to commit errors,

The transformation properties of scalars = invariants, vectors,

tens:rs, etc., have their origin in the geometric nature of these objects. 1In

addition to that these objects may be functions of the point to ﬁhich they are

attached

L3
.

they may be fields.

Let us consider a constant scalar field & (e.g., a temperature

distribution). It is constant, i.e., the same throughout the whole space and

therefore the same in every co-ordinate system.

6'=6
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—_
If we have a constant vector field, v, then a rotation of the
co-ordinate system will change the components vi (though the object f?

itself remains the same) 3

(we always sum over double subscripts) but the scalar product of two such vectors

< . . . .
(vw) = @ is invarient again :

":0‘0( = W =
Vi'y ik ij K3 ki'k'i ~ k'k

is geometrically obvious. Similar considerations apply to a constant tensor field.

Generally, we may say that for any constant field the equations

F' = 3(T)F

(1.14)

x' = Tex

(x = {X1,X2,...,Xnk is a n-dimensional radius vector)

express that under a co-ordinate transformation T +the constant field F
transforms with a matrix S(T). The matrix S(T) may contain one single element
S(T) =1 if F is a scalar, 4 elements if F is a spiror, 9 if F is a
vector, etc. /These different kinds of S are called the one-, two-, three-

etc., dimensional representation of the transformation group $;7

Examples worth studying are the matrices occuring in the Dirac theory.

[See, e.g., Jauch and Rohrlich, p.425, or J. Schweber, p.70/.

But in general the situation is more complicated in so far as F will

be a function of the co-ordinates and not be constant all over the space.

As we already see in the simple case of the scalar, one cannot

say that there is no change under a co-ordinate transformation, since

O &) £6 ')

in general.
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Invarience means in fact here that there is a function_;C;'(x)%_ﬁgfined

in such a way that

') = O &)

It is not easy to explain the meaning of this in words because such an explanation
grovis so lohg thét.it makes the intuitively obvious thing unobvious. The reader
is urged tc make this equation clear to himsclf by discussing the simple exsmple
where (-X(x) is, e.g.s a temperature distribution in space snd T  is a simple

rotation.

We may use x' =Tx or X = T %' to rewrite the equation
] - : . : : v CE
() (x') = C)(T 1x') where now x' ‘appears as variable on both sides and

may be called x again :

Qa'(x) = @(T-1 x) is then an equivalent definition of @ '.

Thus the equaﬁion
O =0k o  0') =01

expresses what is really meant if one says that & Qx) is a scalar function.

We turn to the gcncral cas

let Ey? P) "be a quantity (scalar, splnor, vcctor, tensor) attﬁchbd
to the point P in our n~space. ‘5: is defined as a physlcal gquantity, not as
a set of numbers Z;.g.; :gj(P) vmay be an electric f;eld‘deflned in such an
abstract way*): it doss not refer to é'particular system of co-ordinates but
will, if co-ordinates are specified, have a repreSentation‘(compohents) which
depends on the system chosen. . In quantum mechanics one has analogously the
abstract operators =znd their representatives in the oYotemo cbosen :  the matrices.

One must clearly distlﬂgulsn these two thlngg_/

*)

Bege, by an actusl experimental set up'(distribution of material
loaded conductors in spaoe).
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If we now introduce two different co-ordinate systems K and K

then we can represent T (p) as functions of the co-ordinates x and x'

respectively

P

i

}x1...xn1
Ps= %x%...x;l}
and

T (p)
T

F(x)

L]

i

Fr(x'")

in K
in X!
in K
in K!

F' will of course be different from F, if it will describe the same physieal

situation at the point P.

Now we are for the moment only interested in what happens at P and

we may then for a moment replace the field

?(P) —»TO ’

| B
F! = S(T)Fo ,

namely by that constant field ??fo, which
has the value i;ro =S§T(P) everywhere., It
will appear as the constant field F(x) = Fo
in K, and as another constant field

Ft(x') = F! in K'. We knov, however, how
this constant field appears, if seen from

different systems K and X', namely

where S(T) 4is a representation matrix of the

transformation T.

This is true for a constant field fS:;, which has everywhere the
value which ?FKP) had at the particular point P.
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But in the whole argument no other. point than Piiwas used and we may
well write the arguments x!' and x in the last equatlon : as far as the point

P is concerned, we have
(P) = F(x) in K

(p) = s(1)P(x) in K

but also,

A @ @

(P) = P (x") in XK'

and the two descriptions in KXK' must be equal, hence

S(D)R(x) = s(D)P(T™ %) or

E
—
H—.
~—

]

5|
—~
sl
~
it

S0P () = 57 (D) (1x) = S(TT)PY(1x)  and  (1.15)

give the full description of the transformation properties of the quantity F.

Equation (1.15) reduces toh(I;14) for a scalar or invariant funetion.

From these considerations it should be clear that an "invariant

functlon" is in general not a constent functlon.

 In this dlSCuSSlon we choose as an example for the scalar field a
temperature dlstrlbutlon and not a mass dlstrlbutlon. A mass distribution, more
generally a density dlstrlbutlon as such is not inverisnt. It becomes invariamt
only after multiplication with a volume element and the'whole

dm= g(x1...xn) dX_]...d.Xn
is an invariant quantify. The volume element ‘has, however, ltb own particular
transformation properties : it multlplles w1th a Jacoblan determinant. We shall
discuss this in paragraph 4, where the transformation of crcss-sections is treated.

OQur example of a temperature distribution avoids these additional complications

(why ?).
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LECTURE 3

2) Choice of a system of units

We have

2
X

x2 - x2 - x2 + th
1 2 3
(1.16)

2 22

P mec

ft

In these, and in many other formulae, the velocity of light c¢ appears explicitly.
It seems therefore convenient to introduce such units that ¢ has the numerical

value 1.

On the other hand, in elementary particle physics, one has to do with
quantum mechanics at the same time and the de Broglie relation be tween the four

momentum of a particle and its wave vector is obtained from Einstein's equation
E=HHuw

by extending it to become a relation between four vectors :

P =K 7
B (1.5) bed

-
P=§E’pl’ K:{E,k} (1017)
—
by which the wave vector k is defined.
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This suggests to choose such units that Plenck's constant, %, has the numerical
value 1. We shall achieve both simultaneously and shall adopt from now on

A =c =1, This does not yet fix our system of units completely. Let us briefly
look into this.

We have to choose three basic units, namely for mass, length, time.

Let us choose the prcton mass M to be the mass unit.

If
(M), (8), (c) denote the dimensionless numbers indicating
the numerical value of these constants in a
given system of units, then the elementary-

particle~system of units is defined by :

(), = (), = (c), = 1.

The corresponding unit mass, unit length and unit time shall be denoted by

m, 1l ,t. Then
o” "o’ o

M=1°m = (M) . g

o cgs
moli gom”
=1 t = (ﬁ)ogs sec
o
1o cm
R P

0 °
m =M= (M) = proton mass = 1.672'10—24 g
o cgs
1l = 32 = (ﬁ') cm = proton Compton wave length = O 2‘11»10“13 cm
o MG T \lT’ces = P P gl = Lo

t = ;EE = (—Em)cgs sec. = the time in which light travels one proton

Compton wavelength = 0.0'7'10-23 sec
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This has the consequence that now mass, length and time are numerically measured

in multiples of the proton mass :

let }b be the mass of a particle, then

/LL = (}~)°M - (/M) o

The Compton wavelength of this particle is then

h jal

1
7(/,,=7'5=</k)1v10:(/b)'lo

and therefore the numerical value of the Compton wavelength becomes

Similarly, a time is attached to it :

& 1
- (iuu)IVICZ () o

1
(t’u )= (7;5

and any given length and time can be expressed by choosing the appropriate value

of (}v).
Frequently this is expressed by saying :

"we put # = c = 1. Then only one dimension, namely the
mass, remains and everything is measured in terms of

powers of M or MM,

This might be a matter of taste, but I personally prefer to‘keep all dimensions,
mass, length, time, distinct and choose the units such that the numerical
values become equal to one, but not the physical quantities. In calculations,
however, one practically works with equations written as if the mass were the

only dimension.
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BExample
If your age is y years then, expressed in elementary particle

units, it will be just the reciprocal of that mass, whose Compton
wavelength equals y light years énd that maSs is measured in

units of M .
proton

3) Some practical examples for the use of invariants

Some of the following examples are -~ apaft from their usefulness in
a high energy laboratory -~ chosen to illustrate that the concept of "invariants"
is not only of theoretical interest, but leads to sometimes surprisingly e=sy
calculations of quantities, which otherwise would be found only after lengthy

algebra.

If, e.g., one asks for the centre-of-momentum energy of a system of
particles, then the straightforward - but tedious - way would be to make a
Lorentz transformation of all four mowenta to the centre-of-momentum and add
all the transformed energies. Or, if one asks what is the energy of a certain
particle as seen from the rest system of another one, then one would transform

the four momentum of the particle in question to that system.

If one happens to know, or to have at hand the most general form of the
Lorentz transformation - namely Eq. (I.10) - then these Lorentz transformations
are not too difficult to carry out; and we shall do this ~ater on in an example.
But this formula is not too'easy to remember and just when ohe'héeds it, it is
not available. For the above questions - and similar 6thers —~ one needs not the

Lorentz transformation, however. The print is this :
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if a question is of such a nature that its answer will
always be the same, no matter in which Lorentz system
one starts, then it must be possible to formulate the
answer entirely with the help of those invariants which
one can build with the available four vectors. One
then finds the answer in a particular Lorentz system
which one can choose freely and in such a way that the
answer is there obvious or most easy. Une looks then
how the invariants appear in this particular system,
expresses the answer to the problem by these invariants
and one has found at the same time already the general
answer,
will see in the following examples. It is worthwhile
to devote some thinking to this method of calculation
until one has completely understood that there is
really no jugglery or guesswork in it and that it is

absolutely safe.

This looks sometimes like hocus-pocus as you

Let us turn to the examples.

Centre-of-momentum (CM) energy and the velocity of the ClM.

Suppose we have in a certain Lorentz system - we call it laboratory

and p2 and with masses m

4

A\

_system, but it may be any one - two particles with four momenta P,

1 and- m,; see Fig. 1.4

et P4= %84)$4§

\\

- 5L£1\E'Q§

Lab. system

Fig. 1.4

The two particles kinematics
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Zﬁéoh of the two momenta p1 and pP may again stay for the total

momentum of a whole system of particle§;7
What is thé.CM—ené?gy E ? This questibn.must have an answer which is
independent dﬁbthé'Lorentz system, in which p1 and P, are given,

It must be possible to give this answer in terms of the three invariants

2 2 2 .2 r 2 2
py =m, and p)=m and Lp192 or (p1+p2) or (p,~p,) ]

The answer is obvious in the CM-system itself, namely thers

Z%é denote CM-quantities with an asterisg7

¥ ¥ * *

i ) B o= f s
p1 + p2 = 0, hence p1 + p2 = %g ] + 5 } and = 61 + 52 .
Hence

%2 * 0 *¥\2 * %2 : 2

B = (8, +€,)" = (p, +0,)" = (g, +,p2)

since (p1+p9)d is invariant. We may define the total mass M . of the

system by the square of its total four momentum

)
P2 = <p1+p2)2 = ].\'12 = E*z = (8 1+ £ )2 - (-)-E:I) )L = invariant

(1.18)
"I.&., kinematically our two particles -’p1 and L., are equivalent
to ‘one single particle with four momentum P and mass M =7E6M.
Therefore each P, “and P, can in-turn be considered as representing

a system of particles.

Furthermore, any four momentum can be writtca

75 =m v-db © This is one of the most
‘ 1 useful formulae. It (1.19)
B should be known by heart. Ak
£= m)\{)& \\/ 1—-v2
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Hence, for the total four momentum of the two-particle system :

therefore
S >
- 3 ()
Q)CM =F=rT1 - is the velocity of the CM seen
LT ey from the lab,, and
1 E € &y
\& o I e— i\-([ = is the
2 2 2 correspondin
Vg2 V(e w6 % - 3,3 ponding

(1.20)

For practical calculations one has to express everything either in

21, 62 and cose

or in
ffl,fﬁ | and cose
1 2
using
£ = \/m2+'1’32
Problem :

5) In nuclei the kinetic energy of the bound nucleons goes up to
the order of 20 MeV. Illustrate formulae (I.18) end (I.19) by
calculating the effect of this motion when it is parallel or
antiparallel to an incoming beam of 25 GeV (kin. energy) protons.

(Put M= 1 GeV.)

a) which is the difference in theACM—energy ?

b) which energies must incoming protons have to

produce the same CM-energies on nucleons at rest ?
—

c) which is the difference in the p, and Y of
: the CM-system ?
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Solution 5 2

a) We express everything by ;’ £ and cos® and obtain

b)

%2 2 2 2 2 2
2 2 2¢ ¢ sladmd) ¥ 2 \[(g Fn?)( 2n2)

where the - sign is valid for parallel motion and the + sign

for antiparallel motion. We have then

-
n

Il
Il

€ =1+ 0.02 ef-w 1+ 0,04 -1= 0.04

I

1 +50+625-1 = 675

il
I
Il

E,=1+25 gi-w

| —
\(6?—1)(22—1) = \/4«6.75 = \]26 = 5.1

5 { 65,2 antiperallel
E¥C = 2(1+26.5 £5.1) =

/
)
Z 44,8  parallel

3.08 for antiparallél motion

EX = ) 7.35 for miclecn at rest

6.70 for parallel motion

If the energy o? the 1ncoa1ng proton which produces these

CMsenergles on a nucleon at rest is denoted »y & ‘A then

: { 65.2
2 \
E¥ = 2(g 1) = 1? 54.0
L 44.8
(/31.6 for antiparallel motion

\ . : : |

§' =426 for nucleon at rest

21.4 for parallel motion

That means that the 20 MeV nucleon motion is equivalent to

about 5 GeV Jdifference in primary energy !
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¢) Frou (I.20)

0.956 for antiparallel motion

(5 PP % Fo2
FOE4TE 2T
0.97 for parallel motion
3,34  for a.nfiparallel motion
R ;_.€1+ £2 _ 27 _
X R C)) - {8.08 = , o
- —em- - . L6.70 4,03 . for parallel motion

The reader should discuss the colliding-beam machine in this way !

Problem :

6) Suppose that a group of A nucleons (at rest) as a whole would
interact with an incoming proton of 25 GeV kin. energy.
a) which energy would be available for the préduction of
particles and for kinetic energy ? (Put MY 1 GeV,)
- .. D]
b) how do (bCM and KCM depend on A ?

Solution 6)

a) From the formula derived in problem 5), putting ¢ 1=m 1?

we obtain
%2 2 2
=2 6162 + m1+m2
Wﬁere
€y=m =4
£ =
5 26
m1 = A
m2 = 1
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The available energy E (mucleon conservation !) is

E=E - (&+1) = \(szA A% - (A+1)

We give below a numerical example

A 2 15 10 20 40 100 @

B | 5.35 | T.4 | 10.9 | 13,9

—
@)
.

WO

19.6 22.2 25

The result for oo is obvious.

b) For (:) we have with 31 =0 and 'E =A

26
IHORS =

.which as long as A remains small compared to 26, does not

change very much, whereas

1

e —

5
Vipfew
depends on A much more critically in the neighbourhood of

{b%ﬂ.

. K(A) o —

ii) The energy, momentum and velocity of one particle seen from
the rest system of another one.

Suppose in Fig. I.4 we sit on particle 1, moving with it, which would

be for us the snorgy of particle 27
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The answer to this question must always be the same, no matter in which
Lorentz system we start. It must be therefore expressible by invariants

and the only invariants are again

2 _ 2 o’y ' or (p.+ )2 0 (p,- )2

We call the wanted energy & It is the energy of particle 2 if we

21°
look at it in the rest system of 1 :

L
By =0y

in the system where By = 0.

We only need to write this in an invariant form, namely by expressing it

by the three invariants.

In this particular system the last invariant is

hence -
PP

E :6  —
o

Since the right hand side is obviously invariant, we have already the

general result. PFurther from

(p.p.)° - n°n°
- ot 172
1 2 2

4

NN

- 2 )
3p21| = §

and from (I.19) it follows :
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iii)

if P, and p, are the momentum four vectors of any

two particles in any Lorentz system, then

; P42y
21 m,
— 2 (p1p2> - mfmg -~
— . = E - -y . )
| 221 2 (e = 68, P1p2] (1.21)
o
(3 42 (p,p,)" ~ non
2 e 1¥2 1%
21 2
B
o (p, Pz)

are the energy (E21) and momentum ’(l§;1|) of

particle 2 seen from particle 1 and Vo1 is the
relativeavelocityv(symmetric in 4 and 2).

All these expressions are invarient and cen be evaluated in any Lorentz

system.

The energy, momentum and velocity of a particle seen from
the centre-of-momentum system.

We solve this problem immediately by observing that we need only consider
what these quantities are as seen from a fictitious particle M, namely

the "centre-of-momenium-particle™, whose four momentun is

P =D+,

and we need only apply formulae (1.21) with @1 replaced by P and
p2 by the four momentum of that particle whose energy, momentum and

velocity we wish to kmow.
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Let us denote centre-of-momentum quantities with an asterisk, then

from (I.21)

2 202 2 22
£x TP gz (Fpy)T - M 2 (Pp)" - M)
L= H ‘ pl‘ = V. =

- ?
1 M M2 1 (Ppl)Z

Y

using explicitly P = p1+p2 and

we obtain almost immediately the result :

2
* M2+(m2-m2) M —(m —m2)
ey . 12 . ¢* . Y S
T 2M ! 2 21 ’ 1 2
4 2, 2 2 2 242
|2%(2 _|2%|2 _ 22 =20 (m] m5 )+ (-
4M
2 21[ 2 2]
) [M ~(m1+m2) M (m1—m2)
e
TR
=
w2 | B
S
where g; and V; are energy and velocity, respect=
ively of particle i, as seen from their common centre-
of-momentum system and we = P = (p1+p2)2 is the total
mass squared.

- (1.22)



All these expressions are obviously invariant .as they answer a question
which must lead to the same statement independent cf the frame -of

reference in which p1 and p2 are given.

Eq.-(I.ZZ) gives at the same time the energies, the momentum and the
velocities of two particles m, and m, into which a particle of

mass M deceays.

Problem :

7) Given a decay process

T o
M o—_— m1 + m2

what are the energy and momentum of particle 2 seen from particle 1 ?

Solution 72

We use the fact, that

T
u° = (p1+p2) = mi+m + 2p1p2 ,
hence
> 2 2,

i 4 _ - .
DD, = y(m w, - )

This inserted into (I.21) gives immediately the answer.
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LECTURE 4

4) The Lorentz transformation to the rest system of an

arbitrary particle (or to the centre-of-momentum system)

So far we only have calculated invariant quantities. This could be
done without invoking the Lorentz transformation explicitly. We only made
use of the invariants p?, pg, (p1+p2)2 and of the trick to calculate things

in that system where the quantities hed the simplest form.

If we wish to know directions of momenta, then we can no longer proceed
that way. But we still can write down immediately everything we wish by means

of the general Lorentz transformation (1.10) Zﬁbw applied to four momenta

p= %z,ﬁ} and with ¢ = 1_/z

35 Rl e

s (1.23)
v £ = K[&' + (E’P'] ’
and of the relations between energy, velocity and momentum (1.19) :
- - .
P
(3 = E H E:: 1\7[ ’ - ' (1-24)
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_-,-.-_.‘

1/1/1 3 for any pﬂrtlcle
2E I>} , Do,

gquantities with prime by interchanging them with those
—) -

fﬁ to —(5 .

which give the velocity fl and K‘ (or system

of particles) with {total) four momentum e

We solve (I.23) for

without prime and changing Then the complete set of formulae is

e = g [e- ’f)(@l =y [+ ol (1.25)
Bofs g e-fedls P

According to the meaning of the quantities in (I.25) these equations describe

the following situatior =

let P and p be the four momenta of any two particleé'(or systems

of particles)vin a certain reference frame %,

’ e Ll ) . e : - =7 .
let further K' be the rest system of P [i.e., there P' =0/,
then (I 25) ﬂlvps the +ranoformatlon of the four momentum p from
K to X' and vice versa. ’

Twc examples :

(o)

let there be only one particle and transform to its rest-system

[;his example is trivial and only checks;formulae (I.25i7

-
1L)=P ; (51"% (—-,..
, N 2 -
LI % ,:.. 3'_ o
P =D+ E‘:?TIE -t J =0
)

_t _'Tf_i]_

€=z LE g | ="

as it ought to be.
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( ﬁ) let there be two particles p1 and p2 and put

c.d

P = (p1+p2) =(E+¢, 31:52) = (&,P)

we obtain then the transformation to the CM-system :

ZEéplacing here the prime by an asterisg7

-

> Pp. Pp
->x _-—» P 1 . . *—1 [ 'k—.b] 1
by =Py M(E+M 61} Py =g BE PR = (sce p.35)
e Eﬁ Pp
sx - p| P . p)
by =D, * g [E:ﬁ - 52;1 { EZ = (see p.35)
And, as it sho.ld be
> [B(3.+3,) =12
-
A e P2 R R ] =0
Py¥Py = PytPs Y | TEW 1 2 | B =

Similarly, one may transform to the rest system of particle 1 or 2 and
obtain the motion of the other particle seen in that system. One may, of course,
do analogous transformations if more than two particles are involved by

-

considering groups of particles as being represented by their common four

momentum P = p1+p2+p3+ eree o

5) The transformation of differential cross-sections

Jacobian determinants

We shall see later how a cross-section might be defined in an invariant

way. Presently, let us discuss the following problem :

given a differential cross-section in one system of co-ordinates,

what is the corresponding differential cross-section in another one ?
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We first recall a few formulae which are derived in every book on

integral calculus.

If between two sets of co-ordinates XyeeeX and Yqeooy in an

n~-dimensional space a transformation

X, = X.(Y,'...yn)

TN ;.«)

i i

with the inverse (1.26)
yk = yk(x1o.oxn) )

is defined, then for integrations in this space

Séoog f(X1...Xn] dX_]nacd.Xn: \g'n;.gf LX1(y1oooyn)oooxn(y1cc-yn)] ’@

x v (1.27)
‘ /D(X1;;th) . R
e m dy1.'..dyn ’;-

where RX is a certaln boundary expressed by equatlons in the variables
x1...xn, R the same boundary, expressed by equatlons in the variables
YqeooV, one obtains it from RX inserting Xi = xi(y1...yn in ;;7,

where

=S
b
<
:x:
)
M

—
N
5

7|
B
|
&

/D(x1...xn)
75(5_7:7557

i

(1.28)

o ecess s t<

)
<)
H

<
<
>
>

is the "Jacobian" determinant expressing how the n-dimensional volume element

dy1...dyn differs from the element dx1...dxn.
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(1.27) is easy to remember : if one formally cancels

”)(x e )
K%.G;—.——; dy ,.».ﬂ/y d:x,l...dx

and suppresses the arguments Vqeeovy in f on the r.h.s., then both sides
are equal. If several transformations X ——>-yi —> z, are carried out one

after the other, then one obtains the 'chain rule"

FO(X...XH) /D(x1---xn) /b(yfuyn)

1
) (Z1"'Zn) zlﬁ;(y1...yn) ) 2 (21---Zn)

(1.29)

[Ehat means : one can formally cancel7, from which follows, with Zi = Xi

(identity)

0 (X1"’Xn) 8, (y1...y )
/D(yﬂ"°yn) /D(x eeX )

(1.30)

The Jacobian is 1 if eand only if the volume element is preserved, Particular

examples are :

— the rotations and translations

——  the canonical transformations (see any book on classical mechanics).

Let us return again to (1.27). If we take R.X to be that volume element
which in the x-co-ordinates becomes dx,!...dxn then Ry describes the
same volume element, however, expressed in the co-ordinates NPEREN G We

have therefore

fb(x eoX, )
£ [X_i...Xn] dX1...d.Xn =T [ 1(371...3]' coe m dy aes y (I.31)
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We can look at this in two different ways :

i) take for a moment f = const (i.ee, independent of xd...xp).
i o i L

Then

/>(

v XoocX)

o n

soed )

A7, eedy. - (1.32)
1 ie} ‘

__Lﬁa
b
N g
i ii
=
<
[n)

i.e., the Jacobian gives the ratio between the volume slements

3 . PR 3. -
ax1...dAn and ayq...dyﬂ»

o

So, if we consgider the Jacobian as
belonging ©o tne volume @elementd,

then (I.31) can be interpreted as defining a new functicn

g(y1nouyn) = i [X1(V ,..}f' )’ X

’T"am. \... :D'.».':\‘ » .7.U
Vpee¥ Je 53y J=2leem ) (13121

. . B B .
or, since symbolically "z =T v (T ‘be;ﬁg‘the’transformat10n>,
, =]
gly) =¢(1 'v) ,
which is the transformation law (1017) of & scalar function

[put vy =x' and g = f' to obtain tnat formula/. This function

t is

e

g(y)‘ has physically the same signification as f(z), as
related to cue 2nd the same volume element, namely to dx1...dxn
on the left hand side and to
D(x. v..x
¢ < 1. l’l) dV d:]
Dy ooz ) T

“

| n

cn the right hend side of (I.31).

P

ii) for physical reasons it cezn be preferable n o-t. 1o reclate the

quantity on beth sides to the @& =me volume element : dxX, ...dx

1

as well as dy~...dyn might have couvenient gsomstrical and/or

1
physical interpretations end then ore might relate the function to

El

dx "'er or. the left and to dyaa..dyi cn tas right hand side.
t L i L

-

These *two voiume elements are frequently differcnt not only by a

numericar factor but even by their ohysical dimension.
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If we then define a new function h(y) by requiring
f(x1...xn) dx1...dxn = n(y1...yn) dy1...dyn 5 (1.33)

it is clear that f(x1...xn) and h(y1"’yn) are no longer equal. One reads

off from (I.31) or finds by dividing the equation which defines h(y) by

...dy [ﬁee (1. 52)/
) (. 00ux )

1 n

h(y,'...yn) = f(x1...xn) ’mj (I.31.2)
1 n

Zﬁf course, the x, on the r.h.s. are to be expressed by the yr;7

Therefore the transformation law for scalar functions no longer applies

here., Indeed, the functions f(xq...xn), g( ...yn) and h(y1...yn) have the

y
"1
properties of a density. But if one transforms the co-ordinates in such a way

that the volume element changes, then the density cannot remain the same.

The practical examples which we are interested in are the transformations
of cross-sections and here we shall discuss two cases ! the transformation to

polar co-ordinstes and the transformation from one Lorentz frame to the other.

*
We may define a differential cross-section ) either by the number of a
definite kind of particles Zgér evenj7 going into the volume element dp1dp2dp3

in momentum space or by the number going into the solid angle element and having

momentum between p and p+dp. Call the first quantity S, then

*)

The quantity which we define here becomes in fact a dimensionless

number after multiplication with the volume element. Therefore

it is not yet a "cross-section". The difference is, however, trivial

in the present context and the transformation formulae with which we

end up (1.46) are correct as well for the numbers we define now as for
the cross-sections proper. Therefore we may use the word "cross-—section"
throughout.
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ATy A ~\2*‘-q- v b-‘.ﬁ’)
_}TGPQQIB = 0 eianas dndy dy

d 9
in other words, the Jacclisan ig
’)r—\mx )
W) Lo\ - )
,,,,, ...,..,...._,»,v-;-'obr, » 0D
P Q“{:\&ﬁ(p) S 11 AN k )5,

Ore now delines, on the right hend side of {I.%4

&

.. . s ‘ L2 .G
centum and celid angle, by spiititing the Jacopian ' p SLnfﬁ
inte »7 and sin o The fire* factor is absorbed into the new defined

0

- \ . O . . : R, . .
crosg-section but the factor sinasy Temains in the dif antizl ¢

0 ’f:‘i(papzp.f)

’0”’0‘9”)’"' ! ’
L H 7
e _..s__,,“w) N
Ny \ . L
D2 (p,vY) dp 4.
IunEes
3 o/ 5
Y e ; N 3lo SIS
:){(J.(l)':\,l' f ) p{z o ‘*'\L_iu.g ),}
Ve T AR DR

S
~~
b
e
Wl
N
N

/5:)

35 = sin fg} d A* d(;‘f‘ \

13

his is en intermediats sexample belwzen the two ways of lOOmlﬂ” at the tra

£ Ly

H

formeticn of & function discusced above. Hers cus relates the function to tw
different volume elemsrnts bat -ne does not ebsorb ths whole Jacobian
into the new function. Low much of it is left in the rew volune element

is suggested by physical considerations. The solid angle and the magnitude of

the momentum are convenient; one thervefcre rslatss the cross-section to them.

4), the di~ferential cross-section
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The next example is the transformation of & cross-section from one Lorentz

system, X', +to another one, K.

Let us choose the co-ordinates such that the axes of the system XK' are
parallel to those of K and that their relative motion is along the z-axis.

The Lorentz transformation then is [gee ( 1.9), replace x,ct by pB,E_]

i [ey + pa] o= y[ps - iz ]

P3 =
—_ 1 |
Py = 25 Po =Py
(1.37)
—_ 1 | J—
P,I = P1 P1 = p1
O
We introduce polar co-ordinates
p, =P sin f&cos(—l’
P, =D sin A sin
P, = P cos '\9‘
3
and find that b, =p) and p, =P} imply ¢=9'. Hence
D cosV = )g[p'cos'&w (&E'] p'cos'S-' = E[p cosls- (SE}
p sinvs~ = p'sinr&' p'sin'&' =p sin/&
: (1.38)

¢ = ¢r=¥
E = K[E' + (ﬁp’cosn\‘ ’} | B =b’[— [Sp cost&]
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“For the transformetion of the croos—sectlon we requlre that the number of
particles going into the solid angle element d_fl and hav1ng a momentum
between p and p+dp be the same as the number going into the correspending

SOlld angle element dil’ apd having a cerresponding momentum between. p'

“and p +dp 5"

@2 . (0, 4 g\&? ) 1 an =/‘d2('(,(py,&x{pr)

NPV . VP OLL

dp' 4 Q! (1.39)

This is an example of the second way to look at a transformation : +the Jacobian

is absorbed into the cross-section Z;ée (1.33) end (1.31.217, and consequently

D206, 8,0) 26 1(pr &1 0 ) (prar)
T PT QO = et a(rQJ

) (1.40)
BT (e 25(1,8,¢) ?(q)
Yok - V.0 ’a(p‘g")

where the primed and unprimed variables are related by (I.38). The only task

which remains is to calculate

0 (pQ)
APQT)

We could do this directly; using (IQBS), but we shall pfoceed through anothef
way : for a product of transformations one obtains the product of the Jacobians

[Eée (I.29i7.v~Therefore, if ‘we transform in five steps, namely

o DR —_ - '___ ottt (BN SN (] > (O
.p.,_,_Qi > p AP — p1_;2p3_ > pipipl —> p ¢ = p'

the Jacobian is

D () 7 (pd®) ‘/0(9 o) D (pipiwt) DS F) A (pQ)
NPT " Alom,) A el AS ) A o) A a
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The Lorentz transformation is contained only in the third factor. We first

consider the other ones :

NV (pQ) _ dp sindada@ _ sin &
Ao¢) = ~ dpdmvap

5 [transformation between
P sinh Cartesian and polar _
co-ordinates (I.35)_/.

: N M (p,op,)7"
-/b (p".ﬁ; (‘v)) _ 17273 ] - _____1__,_
3 pp,) T [o(eee)l T

Hence the first two and the last two factors give together simply

2 .2 -
2'7 = E}'nz—-'%? - [see (1.38)/
P sin §¥

There remains to calculate the factor in the middle, which can be found immediately

from (I.37) : since only p3‘ and B are transformed, the Jacobian reduces to

£ (p1p2p3) 0, B

Ci Pz g
Q)(P%Pépé) = /Dp% = K'{' (3/'5‘1.)73 = K+(6E—'-=ET . (I.41)

Hence, all factors together,

D (p0) Esind  pE
= = . (1.42)
et E'sinzﬁl' pZE'

This, introduced into (I1.40), settles the question of the transformation

completely.

We end this discussion by including the cases where the cross-section
in one or both systems is expressed in terms of solid angle and energy. For this

we need three other Jacqbians
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D (pQ) () 0 (en)
AE L) T abal t REQY

which are found again most easily by applying the "chain rule" (7.29), and using

the Jacobian, ( 1.42), which we already know :

D) Do) DE2)_ D) 8 _ps_E sin’d Esind
AEQY o) AEQ Q") w“DZ"p' ginsdr P sind!
(1.43)
from which follows immediately
/D(Eﬂ) _ E_'_E _ b sin2r9~ _p sin & (1.44)
RAa) T T E sinodr B sindT
O(ma) _2(a) (o) 2@ _». 260 ® _
DEQ") o) ') PEQT) E ha’) p
_p' sinr\g»
T osing
(1.45)
Hence, for the cross-sections :
KDZG‘(P‘%”(’) 0?2 U Hprid) ) B'sin® Q)"
maa T ad T ; sin”
D5 (p8¢) DG (2:81¢) . psin
PO B DEYRO ! 5 sin &
(1.46)
Ve (s8¢) 00 (pR 1 ¢1) B sind:
VEOQ T ! p' sind
Ve Ed) Ve g sind
NEDg e QT osins

where (I.38) gives the relation betweern the primed end unprimed quantities.
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Problem :

8) Prove Eq. (I.41) without explicit use of the Lorentz transformation :
define the number of particles going into the four-dimensional
volume element in p-space and discuss its invariance properties.

Use the g\-function and one integration in order to eliminate all
four momenta not belonging to the particle considered (its mass m

is given).

Solution 82

Let N(pop1p2p3)dpodp1§332dp3

four momentum p‘:%po,p’} going into the four-momentum element

4 _
d'p = dpodp1dp2dp3.

be the number of particles with

If we make a Lorentz transformation then this number must be the
same

n(p)atp = nt(p')a*p

But as the L~transformation is orthogonal, we have

D (pop1p2p3)
1) (pgp;pépéi

or d4p = d4p‘, hence

behaves as a true scalar under L-transformations (under more general
transformations it behaves as a density). We now impose the condition

that the particles in question have mass m by using the 5 —function

1(p) 0 (sP=nd)atp = W (p) B (pr2an’)a’p

is still obviously invariant.
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We now integrate both sides from O to oo

over :
S N

Smp) 0 (p%u®)ap db - gmp') 8 (p%hap: Tt

This is allowed since p = {po;i } is a time—like,vector and no
Lorentz transformation can ever change the sign of po. Therefore

if p, goes from O = o0, p' does the same. Now

Yo
O (2(x)) = & —2

1

dx | x,
i

where f(xi) = 0, (Proof ?).

Here this gives with

E(po‘JrE) + &(po—E)'

Iy

>
; E= .

P +m i (1.47)

ZK formula which one should know -

at least know how to find it 17
With this in the integrals ,Zﬁhich go over p_, pé pbsitiq§7,
we find

8y

d~>
NE,3) F =1 (@)

=i
2

Here, e.g., the left hand side means the number of particles of mass

m going into the momentum space element (Pi’pi+dpi) i=1,2,3.
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But from the derivation we know that

N(E,p) = N'(B'3")

hence
)
> = 0(p,p,p,)
dp _ dp' 1723’ B - v
= = = or =y = g7 aee.d /see (1.41)/
= D (P}PR%)
Introducing another name for N(E{E) we find our old formula (1.34)
by putting
. 3
(E,p,p,p,) ) 075(p,p,py)
E VPP, D Py
then
05(p,,p,) 2’5 (p!ptp})
e A dp, dp,, = dpldp'dp! -
’bp{apzfop3 P40t 0 p;’bpéfapé P10
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LECTURE 5

We now try to obtain some intuitive feeling for the transformation of a
momentum spectrum by discussing the transformation from the ClI to the lab. system
as a function of the CM-velocity (%CM in the model case where the CM spectrum
consists of one single peak p* = p: and is zero otherwise. The angular
distribution is isotropic. (When does this model case happen ?). In this

discussion we will. disregard the Jacobian.

AN ¥

b

Fig. I.D

* o *

In p - 8\ polar co-ordinates the spectrum is # 0 only in a circular ring at
* *

P = po. The particle has a velocity in the CM
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D4

i)
ii)

iii)

i)

We distinguish three cases

e

, *
\1 SV

All pariicles go more or less in ths forward direction in the labk.;
they‘all have vZ > 0 and QL/ T/ 2, wsince even those which go
backward in CM are ’h@nt over bv the large f) . The circular ring of
the p’ A% plane is shlf*ﬁd in the p&—pluno 7o far that *ho origin

=0 lies outss de. It is no longer a circular ring (Why ?).

Since no particle goes backwards in the lab. system there must be a |
g Y

. i . 4
maxirum angle & L -2, At any givon N < f\9\ . one observes. tuo
max 2 max
peeks in the lab. spectrum : one at a large memsntum coming from perticlso
going forwerd in CM and one with a low momentum, coming from pariicles

going backward in CM.

For 18\ O these two peaks have the largect separation, giving the rmawizal

- Q . s
and minimal lab. momenta; for W = ’E};w they coincide but they ars
AL e

. aomewhat smeared out.

A P2

Fig. I.6
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With decreasing (5 the maximal lab. angle increases and reaches 71/2
for {5 = v*; namely, when the ring reaches the origin. Hence in this
case Ane observes still two separated peaks in the lab. for all

Qe &tnax = ﬁ72. One of them has high energy, the other one lies at
p=0. If N—» "2 the nhigh energy peak shifts to zero, both melt

together and become smeared out.

ah, p

>

Fig. I.7

1ii) (5 ' v

The ring has crossed the origin p = 0, which now lies inside the ring.
Here also in the lab. system particles can fly backward, There are no

longer two peaks and no maximum angle exists.

) [\\w o L

Fig. I.8

This last case happens if the particles considered have zero mass since

then v = c 1is always ?>(5 . We will discuss this later in detail.
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For a general spectrum we may alwsys imagine that it is composed of such

48-spectra which, however, are no longer isotropic in the CM system. We may still

draw in the CM system ring-shaped regions (not necessarily circular) and

we may apply the preceding considerations tc each ring. There may, or may not
be a certain part of the CN spectrum which in the lab. systen appesrs twice
(e.g., one peak in the CM will givé two peaks in the lgb, il it lics in that
part of the Cl spectrum§ it will give one peak in the lab. if it 'does not lie
there, See Fig. I.9.)

% .b

The preceding considerations do not give the transformation of the spectra -
the full story is contained in formulae (1.44) - but they give a feeling of
what happens and which part of a spectrum goes where. ZWhat we called a "ring"

is of course, in space, a ”shell(;7
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We now carry through the preceding qualitative discussion quantitatively
assuming a 6‘—shaped isotropic distribution in the CM (spherical shell). The

following questions will be answered :

(a) which form has the shell in the lab. system ?

(b) which are.the two momenta for a given angle £% in the lab.
system ? Which is the maximum angle in the lab. system and

the corresponding angle in the CM ?

(c) 1is there a simple graphical construction for finding the two
CM momenta (directions) which will appear under the same

angle in the lab. system ?

We use momenta instead of velocities since the components of p transform
like the space components of a four vector - which is not true for velocities.

Let p* be the magnitude of the momentum in CM.

(a) The transformation for our problem is (I.37), (1.38). Only p3 is changed.
In fact

P, =D} . (1.48)
oy =t [y )

E¥ is a constant. To any possible value -p* £ p* £ p"  exists also the
value -pg with the same p§ and pz. If we call - é&p;»= 2 |p§| , the
corresponding length in the lab. system becomes [&pB = Xuﬁpg according
to (1.48), whereas p? and pz remain unchanged. The spectrum, which in
the CM appears to be a spherical shell with radius p*, will appear
"Lorentz enlarged" in the lab. system, namely as & rotational ellipsoid

shell with half axes

X
a1_.p
a_*
2“'p
_ *
a3 = X’p .
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A
APL APZ
S./W(\X \
(o
. APs’X“P:&
>
Ps P
Fig. I.10

The centre of this ellipsoid lies in the middle between

it

p3 ylnax

¢ [ pE]

" and

il

[ per]

p3 ,uin

hence at

p3,oentre = K(bE*

Indeed, in the CM system we have p?z + p*2 KT w2

> TP p*°, hence with (I.48)
2 42 .42 2 2. N Con
pFprtetS 0T p0 (p- OyEY) '
1 ¥ T3 1 2 3
.—.__..._é_——. = _,\:é 4+ —5 + —-—-——-—-2——2-—— =1 (I-49)
< 1 A

which is the equation of the rctational ellipscid in the lab. system.

This ellipsoid touches the point p3 =0 if

R B I

i.e., for v* = (5 , as we found in the qualitative discussion. For
v > (5 it shifts over 133 = 0 to the left and then the origin
(p ;=P 2=p3=0) remains inside.
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The position of the focal points follows from

1l
©

i
)

£2= p*z( 6‘2‘7) _ (52 sz*z .

Since & is the distance of the focal points from the centre these

points lie at

f1,27 (EK"(E*JLP*) :

If the particles have zero mass, one focal point lies at p3 = 0.
(b) We can always turn the axes such that p1 = 0. Then
=p.t
Py p3 g 3

We introduce this into the equation of the ellipse (p 1=O !) and obtain

(0.- PyE")”
p§ tg° % + -—-3-—%—-—— =

%2

This quadratic equation for Pz has the two solutions

O _ Bt s BN - PEO@ AT
3 '1,&2 20, . )
1+{\; tg“ ¥

Since this equation involves only tgzr& y 1t reanine true even if the
origin p1=p 2=p =0 1is inside the ellipse :

5
D P2

i P ¥

Y m P

Fig. I.11
2658
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The figure shows to what the. two’ roots: correspond in that case. . The
maximal angle implies that the two roots of (I.50) coincide [s-ee Fig.I.‘lQ7.

Hence the square root must vanish. This gives

" 2 T o |
N, sy (mm k) (L)
i K( :\{1\);_\7,‘ ) E' .
As we know already from our qualitative discussion, tgr& =® for

mex
v = {5 . L For v© > l/j) there is no real solution, the ellipscid encleses

the origin p1=p2=p3'=0_.7 The corresponding angle o ¥( an ax) can be
found by the angle transformation formula (1.12), but there is a simpler

method :

suppose we attach to the lab. system a fictitious particle of the same mass m;
this pafticle is at rest in the lab. system and has moméntuin - /') ym in

the CM. We have then the following situation : the maximum angle fS\maX

is given by the tangent cone from the origin p =p?~_'_p7=0 to the ellipsoid
o > Pz

1
and in the CM system we have the corresponding tengent cone from the point

—\(’:w‘m to the sphere (se‘e figure) :

Fige I.12
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Hence :

% ¥
—-COBy = (\p‘ — .
Vmex’ g
_ . % v .1 1 A* : 5 .
We write p° = and put ————— =Y . We then obtain
[ %2 [T e 4
v 1=V y 1=V
* ¥
o % v
cos!}*(\; ) = ,.)\‘j\ . (1.52)
Yoad) Y

(¢) This last remark leads to a very simple graphical construction

Z;ée Fig. 1.127 :

draw the ellipse aund the circle correspending to lab. and CH spectra.
To one angle in the lab. (straight line leaving pzzp3=0) and two
corresponding momenta (the intersections of the straight line with the
ellipse) correspond in the CM system tw O angles and two momenta
such that for corresponding momenta b, = pé always. This method
works also for v'>{3 /see Fig. 1.11/.

i



LECTURE 6

I wish to add here an application of the foregoing considerations which

results in the surprising statement :

"if an observer looks at (or photdgraphs) a fast moving object
( C)R$1) which approaches him under a smell angle o of
observation then, if o > \‘1-— ('32, he sees no longer the

1

frontside a of that object, but he can see the backside c .

[S-ee the figure below, the object is assumed to be a cubpj.

¢ {:::} o > 5~

I <

g, (

Fig. I.13

Arrangement of the observation
of a fast approaching object
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. be opaqgue, so that any radiation which has a

640

If )~ 1, the critical angle
1

then an object appears under an angle x = X o’

the frontside a,

will show us no longer the frontside a but b and the backside

To prove this statement we have only to apply ocur above considerations to
the transformation of spectra.

light sources which emit an isotropic and monochromatic radiation.

absorbed.

Now consider the radiation of one of these light-points. It has just all

e
o

ol

if the object would not move;

V1—(52 may be very small. If

Ce

one would see practically only

whereas our fast moving object

Assume the whele surface of the cube covered with

%

Let the object

component towards the cbject will be

the properties we requiréd in our model case for the discussion of how a spectrum

transforms. We meet here the case in which the vélocity v of the particles

in the object's frame (CM) is gréater than {5‘ . Hence the situation is as

shown in the next figure

2658

.
.

K
A ra
- — — T ‘:"’:;’_:?'/""’—/“ »r:,:n. e S e
- = A s TR e TR o)
< e T ol = 0y = Ni-3
e L S —— i
- - ' ik L ANA —
\ X J
X pro —s
NS
\ N
N \
radiation in the radiation in the
object's frame cbserver's frame
Fig. I.14

We apply our considerations to the case p =E* = ¥

light in the object's frame).

(the frequency of
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In the lab. system the angular and momentum distribution is then given by an

* s
ellipsoid with centre at’ {-55'2,, Sincs v =c=1 = [/_, , .the ellipse surrounds
the origin in the lab. system. A1l the light which in the object's frame. goes
forward is emitted within the angle C>~/zo = ();’ R \;a (’32,_ as follows immediately
N

from the figure (indicated by a wavy&?.ine‘). N ":ﬁ. part of the light going backwards
in the object's frame still goes forward in the lab. system, where it appears at
angles between cLO and ‘E/ 2 (indicated by broken lines)., Only a small part
of the light emitted backwards will go backward in the lab. system too (thin line).
Therefore the isotropic and monochromatic radiation as it was in the rest system
of the object, appears like coming from a spotlight in the lab. system : 1t is
sharply focussed in the forward direction and, of course, its frequency depends

on the angle. Therefore, if we look at the object at a certain angle (1et the
object be so small or so far away that of practically does not vary over the

object) , then

—— we can see the radiation coming from the frontside "a" .of our cube .
i

i
only as long as ol < béo [ \!1 (52 ;
-— we cen see always the radiation coming from side "b" ;

— we can even see the radiation coming from the backside 'e"  as
soon as o = ol \{1~-ﬁ> .
o}

To this one should add the Doppler effect, as can be seen from the figure. What
do we then observe ‘? First, when the cube appears far away, we see its frontside
"a" and, shortened by perspsctive, the side "hl's both radiating'ultra-
violet. Then, if ©h grows, the cube seems to turn and if A= O% = -(-g«g/ ,
then we see only side "b", still violet. If o, Ybecomes greater than o’

we no longer see the frontside "a" but now it has turned so far that the back-
side "e" becomes visible; the colour becomes less violet. Finally, when

A = W/ 2 we see practically only the backside, radiating infra-red. The picture
remains then nearly unchanged until the cube disappears (2 =T). This quite
unexpected behaviour can be explained in many other ways too and these other ways

lead to a new surprise : if one 1l ook s at an object, or photographs it,
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then thié above-described apparent rotation of the object is the only thing that
happens. The:e will be no Lorentz contraction observed : a fast moving sphere
appears as a sphere and not as a pancake. This does not mean that the Lorentz
contraction did not exist; however, the Lorentz contraction. takes place under
the condition that the position of all pecints of a moving object is determined
simultaneously, i.e;, at one given time in the lab. system, whereas "seeing" or
"photographing" supposes that the light pulses coming from a moving object do not
leave it at one given time, but instead arrive at the eye (or shutter) of the
observer at the same time. This condition implies that they left the different
points of the object at different times against the supposition under which the
Lorentz contraction is derived Z;ee p.1§7. For further details see : V. Weisskopf,
Phys. Today 13, N°.9, 24 (1960).

It is left to the reader to discuss the even more curious case where we
assume the object to be covered with a @ ~radiating material and to be photographed
with a {B—ray sensitive camera. To make it a true science fiction assume that
the ﬂ)-rays are monochromatic in the object's frame. Suppose then that the

velocity of the object is greater than that of the electrons in the object's frame.

6) Variables and co-ordinate systems frequently used

in elastic scattering

We shall discuss here some notations and techniques which have become usual
in recent work on scattering, in particular in discussions on dispersion relations

and the Mandelstam representation.

Consider an elastic scattering event and define the momenta before and

after scattering, as shown in Fig. I.15 ¢
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\
/

'y P
s ™

Fig. I.15

We use the convention that all four momenta are ingoing., This has the
advantage that one may consider any two of the four to be the incoming particles
and the other two as the outgoing ones; the physical momentum of the outgoing
particles is then the negative of that one which we use in the present formulation.
We shall, however, denote the physical momentum of an outgoing particle by a
prime; if, e.g., in Fig. I.15 the particle corresponding to the arrow with k2

is outgoing, then we call its physical momentum ké =‘—k2.

(a) The independent variables of the scattering process

We shall disregard spin, isospin and excitation of the particles.

Then the two pairs of four momenta p,, k  and Pss k

1”7 2
the initial and final states respectively. The transition amplitude - which

completely determine

describes quantum mechanically the process - can therefore depend only on these

four four-vectors :
= k .53
Tfl T(p1 9:"'{1 ’p27 2) . (I ’j)
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It seems therefore to depend on 16 variables - namely all the components -
but we shall show that these are not independent and, therefore, the number of

variables reduces to two only :

* the emplitude T has to be a Lorentz invariant quantity. In fact,
its square gives the probability to find a state "f" when the

initial state wes "i". This probability csnact derend on the

Lorentz system of the observer., Therefore T must Assond on ths

invariants which one can construct out of the involved four momentsa

2 2 2 .2
k” k pk ok kk k k p
P Ky Por Spr iRy Ry iRy R HyPa T
* these ten invariants are not all useful for the description :
2 2 2. 2 2 2
-7 — 9 T = kT = {
Py=py == and k=g =

are fixed parameters which we need not mention as variables.

*  the remaining six invariants are indeed variables which can be

used to describe the scattering process. They are, however, not

independent : four-momentum conservation requires

O
.

0 R D AR, =
Pymig Tty

This four-vector eguation i. wguivalent to four simple equations;

therefore the number of variables reduces to 6 minus 4, namely 2

independent ones.

It is not arbitrary which two we select : teking, e.g. :
k , I
Dk, amd by

we would make an impossible choice. Namely, by multiplying
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p1+k1+p2+k2 =0 (1.54)

by k1, k2, Pys Py respectively, we obtain the four equations
<

2
k,(p+p,) = - p” -k k

152
E(0,40,) = = - - kK
2\F T Jod T2
5 (1.55)
p1(k1+k2) =-mn" -pD,
)
p(k+k,) = - u” - p.p, .

From the first and the second pair of equations, follows

(k,-k,)(p,+p,) = 0
(1.56)
(p1—p2)(k1+k2) =0 .
Adding and subtracting these equations results in :
k,p, = kP,
(1.57)
kb, = kP, -

Thus, if we use p1k2 as one variable, then k1p2 cannot serve as the second one
since it is identical with the first one. Similariy one can use either k,p, or

171
k2p2,

but not both as the variables of the process.
Adding the first pair of (1.55) one obtains

2
(e 4k, ) (py#p,) = -2 - ek

N
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while the second pair gives

N

(9,+0,)(k +k)) = ~20" ~%p.p,
hence
(k,+k)(p.+p,) = Aaz Kk =me - p.p
N e 172 172 By bl
(1.58)
2 . 2 2 Z
1k Y = = k =mn S N ]
3k ,)" = 3(p, )" = W7+ Rk =" 4o 5
where k,]+k2 = —(p1+p2) has been used. If we combine this with (I.56>, we see
then that
b ] ;) = - ) = -
2(k 4k, )(p,#p,) = - K (p,+p,) i (p,+p,)
==-p{k +k ) = —p (k +k_)
p,(k +k,) o, (k,+e) s
hence

2 2
-k (p +p2) = -k (p +p2) = -p, (k +k ) = pz(k +k ) o= / +k1k2 = m+p,D, -

(1.59)

Therefore k1k2 and p1pP cannot serve at the same time as variables.

We can now check explicitly whether we really retain only two variables.

We had 6 useful invariants 3
’ p1k1’ Pykor ByPyr Kyl kBos Koby o (1.60)

k. drops out (I.57). Take furthermore

Assume we select the first one, then o
.57). We are left with

P
2
the second one, then k pP drops out (I

1
p.k,, .k, and DD, -
However, from (I.59), it follows that

2
S o = em” =Dk = pk .
Pypy == = By®y = Py
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Therefore the variable p1p2 is a linear combination of the first two and gives
nothing new. Our particular choice leads thus tc two independent variables,
namely

p1k1 and p1k? .

We could of course have taken two other independent invariants; the most general
choice consists of any two independent linear combinations of the six invariants
(1.60).

Equations (I.55) through (I.59) are sometimes useful in calculations
arising in a change of variables.



LECTURE 7

(b) Useful Lorentz systems for the description of the scattering process

Particular Lorentz systems become preferable if, by their use, convenient
variables assume simple forms and/or if certain symmetries are exhibited. We
therefore expect useful Lorentz systems in the cases where the Z-momentum of one

particle or the sum of 3-momenta of two particles vanish :

—
(L) k, oz D, vanishes in the lak. system (if k,
or p, refers to the target particle ).

-'-)\ _—5

—>
( @) E: + P, and ké + pé vanish in the CM system.
- -
( X) k1 + k; or ~ﬁ} +‘§' vanishes in the "Breit"-system.
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These are the most natural choices. The CM system exhibits the
— -5

—_
highest degree of symmetry. Choices in which k1+pé or pﬂ+ké vanishes sesn
i
not to be useful since the "k" and "p' particle will generally have different
masses. If m=J, howcver, this reduces to case (¥ s
i
Choices where the difference of itwo momenta vanishes, are partly

impossible and partly not uzeiul 3

* impossivle if the two womenta belorg to equal masses. If, e.g.,
- - ) ->
k k! = U f 3 | = _..l i 11 = YiCE >.1 = ( !
] LZ G, then |k,j IPZ, , hemce (J, = (W) and

(k -k') ((«'1 Wi, X .-A') (0,0). In other words : if
such a system exists, then there is no scattering; or :

if there is scattering, then such a system does not exist.
* not useful if the two mcmenta belong to different masses.

When we say "not useful®, we meon tha’ hitherto such Lorentz systems have not -
shown .practical importance. They way, perhaps, do so in particular cases.
Disregarding them hers, we sye left e.ventially with the three choices : (@<‘)y

((5) and (X') mentioned above which we shall discuss now.

4
. ) T RV
- . //////

o= (k) O \@L

‘/4arﬂei rat#r!@
\
\ P": [ e (“)
Fig. I.°0
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This is the system where one of the incoming particles is at

- rest., Let this be the "p 1f'—partic:le. We then use the notation :

-—}
p, = (m,0) k, = (Qk,)
| J— 1 -’I | R— Q—)|
. , . . .
Useful variables are W 1 W5 52 and cos @L, where QL is

the angle between the direction of the incoming and outgoing "k'—
particle. It is easy to express these variables in an invariant
form using the procedure explained on p.27. From the fact that
the three-momentum ?1 =0, it follows at once that

(,L:}1(L) = (p & 1) . 1‘}1 = lab. energy of the incoming particle
g ‘:‘(L) ,) 1 ticl
(o, = ( Ky o= lab. energy of the scattered particle
'\,'(L) 1 1 .

& s = (p1p2) ceo o= lab, energy of the target particle

after the scattering.

(1.61)

Since m is an invariant, we have already expressed these variables

in an invariant form.

The scattering angle ©. will follow from the scalar product of

L

l<:1 and k!, namely

— hd
k= @0~k | [k cos o

172 7 L
—
With | k' = \[&)2— /1,3 one finds
2
[ 1 t - [
W qlp - k5 (eypiegpy) = (i k)
cos QL = =

ViwZ o) Joee o2 ] e o]

2658 (1.62)
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Here the (U 's~have oecen expressed invariantly by (I.61);
this formila may % transformed into other expressions by meé4ns of

formulae (I.55) through (1.59).

(P) Ihe centre-of-momentum systen

" This systenm exhibitS'thé~symmetries of two-body kinematics

most clearly.

,pz
27
) " e //
L
N).\*/ /
Ry ',j"\,@“" h
2 K =
/ -~

Fig. I.17
The CM system

The CM systvem ig defined by

- =

¥ K4
"%y 7

l‘}-l 0
L = .
2 %2

Therefore
!1{1' = [p‘” =K
and

K.

Il

& o
,kgl = lpgl

But K and K' are equal for the following reason. :

2658
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it

the CM energy is given by Z;btation : p=(¢ ;5) s k= (Q;;Ei7

2 2 i)\
Evaluated in the CM system tiis becomes

2 2 2
B = W) = (£ 144
on = €,74)7 = (€5+01)

or
e s h =12 S 5512
E’SM = “K2+m2 + VK2+/A,¢} = [\/’K'Zﬂn‘a + '\/’K'2+/«L2}

hence K = K'. We could also have invoked our formula (I.22), .35,
which states that the momentum X 1is a unique function of the CM

encrgy E and of the masses of the particles. Zﬁhere the notation

CM

is different : K <— p*, B > M m > mn, ; /L<—-> m2 are

cM 1

the correspondences./

this concliusion does not hold if the outgoing particles have masses

differe..t from the incoming one§;7

From K = K' follows at once

™
]
™M
N —
i
1l
<_
=4S
+
=]

- (1.63)

il
<
b
+

R

—_ |-
C\)d _‘(o\)2 -

2
Frequently ECM iz called s and used as a variable. The second

variable cannot be K gince it is uniquely related to s by means
of Eq. (I.22) :

2 ‘ 2
2 _ [o-(wfe)? ] [ o(m-p) ]

= magnitude of the CM momszntum of

4s either particle before and after
“scattering.
2 2 ;22 S|l r 2
—_ 4_ 1 — c it 1 = L ‘ ] e - [CW
s = (p1+k1) ~(pé+k2) _(p1+k1)(f2+k2) VEen® + bKZ./¢‘ M Energy
(1.64)
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Either of these — but not both — may be used as variables.
The scattering sngle might be conveniently taken to be the second

variable : it follows from k k but more conveniently from

12’

~

S - 2k k) = 2[/&2— Ww+K" cose

—~
=
1
o
I

C ]

i

with W = K2+/b? we have

] [u-(m-- )" 7;.&-..‘"1--/-&) ‘} "‘;GM”]

2ts

2K | [s—(m+/4«-)2}[ s—(m—/a)zJ

(1.65)
where we intrcduced the frequently used notation + = (ki—ké)z

Note the high symmetry of the process in the CM system : all megnitudes

of momenta are equal and the individual energies conserved.

(K ) The breit system (brick-wall)

— g g e e g e

This system is also useful as it cxhibits symmetries. We apply

. —_— — —
such a Lorentz transformation that & +ké =0 Zsee Fig. I.17/.

1
Therefore k ’ and k'2 will have the form
- - (1.66)
(o, =k,

From energy conservation follows then that the energies of the "p"
particle before =znd after the collision, £ . and E.é muist be
1 -

equal; hence ' 'ia[ = !;El and

2658
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g
p.} - ( C!p,]) R N ‘;__é____é, “
: ”})with 3.1 = I3y —p= | (1.67)
p' - E’pl
2 2
“ From k1-ké = pé—p1 follows
. o _
k -k = (0,2k) = pi=p, = (0,575 (1.68)

e . o .
2k  is the “hree-momentum transifer”.

Bquations (I.66), (I.67) and (I1.68) yield the following picture.
Both particles seem to be reflected on a hard wall, the "k"

particle perpendicularly

——

o | \ -
[ \

TN

/ | b
. Eaa( I

7t/ t>///’ v=\\\\\ \
/ E

Fig. 1.18
The Breit system

. 2 2
' )e = ! ! = - = U
Indeed (p1+p2) 2k (p1+p2)(P2 Pq) p=p =0
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Whereas in the CM system the energies ¢ and © - of the "p"
and "k" particles respectivelth were not independent; they are so
in the present system. Therefore they are convenient as variables.

We shall express them invariantly. This is easily done by noting that

| -
k k) = (200,0) .
Hence
2 afn 2
g = 4(k1+k2) (1.69)
and
(p.+p))" (K +k!)
& =72 1_2____l_2 . (1.70)
2
1
\/(k1+k2),
In this ;§§%5% the variable t is very simple :

L
t = (k1-ké)2 = (O,éﬁ)z =-42k]2 = square of the 3-momentum transfer.
(1.71)

The scattering angle for the "k" particle is 180o by definition,
that of the "p" particle is found from

2 >
T D! = - .
(p1 py)" = 2p (cosgB 1)

)2

2
-p! = k! —
But (P1 P2) = (k1 k2 = t, hence
t N
COS@B =1+ g;é }
; 2
P (1.72)

¥

t = (krké)? _ (p1—P§)2 - 2p2(cos~9B-.1}; _ _
" [see (1.70)/ .

2 72 2
We may express Q)B =f k{-+/L by means of t :

Q)B =/)/ -+ Z (I-73)
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LECTURE 8

(c) The variables s, %, u

In this section we shall use again, as in (a), the momenta p2 and

k2 thus leaving open which particles are incoming snd which are outgoing.

Ra

r‘\ P,,;,\

Fig. I.19

Definition of s,t,u

In the foregoing discussion we found already that s and t were
useful variables and we shall define a third one, u, though all three are no

longer independent of each other :
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Il

2 2
= (k = (k ~(k k
5 ( 1+P1) ( 2+P2) ( 1+P1>( 2+P2)

2 2 , _ 2 2 ‘
t = (k1+k2) = (p1+p2) —(k1+k2)(p1+p2) = 2(/% +k1k2) = 2(m +p1p2),

i

u = (k1+p2)2 = (p1+k2)2 = ~(k1+p2)(p1+k2) [see (1.58i7
'..(1974)

The physical significance of these variables can be expressed in two ways :

i) s 1is the square of the CM energy if k, and p1 or k2 and. p2

are incoming

t (1] " n L " " it lf k1 and k2 ar p al'ld p2
: are incoming

1

a " 1" i 1" "o " if k and p2 or k2 and p
L -are incoming

_— This is.a rather artificial description since each variable is defined

.. by.another process. The three processes in which S,t,u are the squared

CM energies, are called the "s-, t—-, u- channel" respectively.

To have an example : 1let k1 5 describe pions, p1 5 muicleons. Then
’ ’
the
s-channel means T+N —>T+N or W+l — T4T
t-channel means T +T— M+ or WN T +T

u-channel means T+N —> T+ or T+ — T+N

ii) if we describe the meaning of s,t,u in a definite process, e.g., the

"s—channel", then
S 1is the square of the CM energy;

t is the squared four-momentum transfer. In particular it
Treduces to the -squared three-momentum transfer in the Breit

. system (I.71);

u has no simple physical meaning since there is no Lorentz system
where it reduces to anything obvious. This is a consequence of
being the difference of physical momenta ¢7 particles with

different masses Z;ée remark on p.74, under (bl7.
2658
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As s,t,u are not independent, we can write down a relation.

From (I.74) :

2 2 ‘ 2 2
+ = 3 ! K 9 k = P
s+E+u 4fb +2m +251(y1+p2+ 2) %ﬁ, 2m
,w.\Yl;-: “.“_""
T
2 2
sttu = 2" +2m" . (1.75)

Let us anticipate the notion of the scattering amplitude, namely, that complex
function which completely describes the scattering process. It will be a function
of two independent invariants, but we may write it as a function of s,t,u if

we only keep in mind that one of these variables is redundant. Let then

T(s,t,u) = scattering amplitude. (1.76)

One can prove - independently of perturbation theory - that this function is an
analytic function of any two of the variables if these are considered to be

complex.

There are then certain domains in the complex st- (or su- or tu-)
space in which these variables become real and have "physical® values, These
regions - as we shall see - are disconnected and belong to different physical
processes, namely the three processes described on p. 82 under point i).

That T(s,t,u) is an analytic function of any two complex variables out of
s,t,u means then that the "physical scattering amplitude" is the boundary value
of that general function when s,t,u take on physical values. In other words :
the "physical scattering amplitude" is obtained in any channel from the general
function simply by specializing to the "physical values" of s,t,u for that
channel. As the analytic functions are essentially determined by their
singularities, it is important to know the singularities of T(stu). We are
far from knowing their structure. In recent work on strong interactions,; a

conjecture of Mandelstam sbout these singularities has been widely applied.

2658
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Though. it has led to very intuitive descriptions of strong interaction processes

and has supplied us with a new technique, it remains 2 conjecture. This does not
exclude its value in practical limited calculations. Namely, it may turn out

one day when we know more about these things, that Mandelstam's ansatz neglected

singularities which in many calculations show only little influence.

We shall not go into the "analytic structure of scattering amplitudes"
(which would require a special lecture), but only explain the graphical represent-

ation of the variables s,t,u and exhibit their "physical regions".

We remember from elementary geometry a theorem on triangles [Eig. I.ZQ7

If from any point P the three distances g, gb5 g, to the sides a, b, ¢

resypoctively are taken, then
aga‘-" bgb + cgé = aha =bh.b =ch =2F -,

namely two times the surface of the triangle. [Ehis'is'alsc true for points
outside the triangle if proper care of the sign of the distances g, “is takéq&7
Here ha’ hb’ hC are the three hights perpendicular on a,b,c respectively.“

Taking chc and dividing by c¢ we have
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With this we compare (1.75)
u+ s+ t= 2m2 + %M,Z

and see that we only need to identify

a 2 2
=g, =ui 3 g, =Si & = t s hC = 2m +%H"

to have our relation between s,t,u fulfilled. Therefore any three co-ordinate
axes intersecting such that they form a triangle with hC = 2m2+%fu2 can serve
to represent s,t,u in a plane. Of course one chooses particular triangles

where the representation becomes simple.

The best choice seems to be a=b=c; h

2
om +2/A,2 (Fig. I.21a).
This is very symmetrical but has one disadvantage : the boundaries of the
"physical regions" will be given in the form of equations between s and t.

Such curves are easier to draw in a rectangular co-ordinate system.
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. -n———-'—""-"—
——
NS——

=7
R 1 — ¢
L ~"”: \.“. Gy \ ~

Mo, I, a
Piysical regions of ~,t,u-channels in
symietrical representation for m =i.
— . . . . !
Every point in the plare satisfies
s+tvu = 4n12
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In the latter case we choose

| b=0=%=h=2m2+2/.&/2
@ t
AN /-""‘
.
‘/4,
c 4t
.
8 Yo
)
(%2
A /// qﬂM}

87.

[Fig. 21.%/

T \/\ i 6\(%///// > S
\ A @

Fig.I.21.Db

Physical regions of s,t,u-channels in
cartesian s-t-plane for m-=M ., Every
point in the plane satisfies s+t+u=4m®
(Note that the unit along the u-exisis
smaller by a factor 1/ V{2 as compared
to the s- and t—axes.)

AN



88.

Let us find the "physical regions" of s,t,u in the three possible

channels. We draw first three figures : Fig., I.22s, I.22t, I.22u

P%? 7? K M 2y n ¥
/4 A /
\ / \ / '\ /
i rd
( 9
\.
N\ /\../\
< ' /f \M
b 2 /
P Q P4 A !
4 4 P,] @1
Fig. I.22s Fig, I.22t Fig. I.22u
s=- channel t —~ channel v~ channel

We see immediately that even for m #}ﬁ, there is one symmetry : namely, that
t 1is the momentum transfer in both - the s-channel and the u-channel - whereas
s and u are interchanged; we expect thereiore that tihe physical regions in
the s and u channels map on each other if s and u sare interchanged
(this is the famous "crossing—symmetry); it will show up most clearly in the
symmetrical representation - Z}ig. I.21.2, see also Fig, I.2>.§/.
If the masses are equal : nm = Ab, then there is more symmetry :
i
going from the s-charnel to the t-channel, u keeps its meaning
going from the s-charmel to tihe u-chamnel, t keeps its meaning

going frow the t-chaimel to the u-channel, s keeps its meaning.
The physical regions are therefore mapped on each other if we .

i) interchange s &>t and keep u ;
ii) interchange s = u and keep *t ;

iii) intercnenge t &3 u and keep s .

These are, in the symﬁétripal represehtation Zﬁig. I,21;§7, the reflections of
the whole plane with respect to the three syunetry axes of the basic triangie ABC.
In Fig. I.21.b the different scale along thé axes makes the figure apparently less
symmetric, but one easily translates the physicsl regions from Fig. I.21.a o

Figo I. 21 f’bc
2658
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This symmetry allows us to discuss the s-channel only. We shall
restrict the consideration to the most symuetric case m =/x,. We have in the

s-chamnel (CM—system)

il

2
s = (91+k1) (pé+ké)2 (28)° = 4(n"+K°)

2
(k! -k — oK
\CZ 1) 2K

2
— LI
t = (p2 p1)

with K +the momentum of all four pasrticles. Hence the "physical region" in the

s-channel is given by

4m2.4 S
2
t . £ t4£0 ; t . = ~4K2 = 4m -8 .
min min
With s+t+u = 4m2 we find st . +u = 4m2 = s+t . . Hence the boundary
min : min

tmin = 4m2—s is identical with the line u = 0. The physical region of the

s—chennel is therefore given by the two conditions :

t£0
w

40 .

This region is shown in Figs. I.21.2 and I.21.b shaded and marked (:) . The
correst. :nding regions for the other two channels follow from the above symmetry

considerations. The case m :>/{,b will by treated in Problem 9 below.

Only in the physical regions can physical measurements yield information
about the scattering amplitude. A remerkable circumstance is that the different
channels correspond to very different processes :

assume that p and k mean nucleon and pion, respectively. Then

~channel : f'-N scattering (elastic);
t-channel : MN+N — 2% Zc-;r T+ — N—rﬁ-/_;
u-channel : T-N scattering (crossed process with respect to s—-chamnel ).

A1l these processes, different as they are, become "one and the same" if one

considers the whole complex stu-plane.
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Problem :

9) Discuss the physical regions in the s-, t-, u-channels respectively

in the CM system if m;>fy{,

Solution 9)

We consider first the s-channel. In the general case with two

different masses we have

)2

It

-
— (% = S (et
s = (k qu) = (Kz.p2

1
2

2 2
t (pé—p1) = (Aé—k1)

I
il

.
2K (cos & = 1) .

4

m2+}02+286)+2kz > (m+/b)2

We note first that, whatever +t means. the cos@ has a physical

’ S . 2 C o A .
meaning in all three channels, whereas K  might become negative

(i.e., t positive, namely in the t~channel).

2 . . . . . .
If we therefore express K - vhich is an inveriant in the sense of

o 27 - a function of s then we can immediately obtain a relation
)

between s and * which determines the .boundary of the physical

region. Now K is the magnitude of the momentum of all four particles

cand this is a unicue functicn of the CM-energy and the masses of the

particles involved. Ve have derived a formula for this, namely (I,22)

. . .2
Pe 35, We must replece M by s, m, by m, m2 by'/L, and

1
axi 2 2
B9 by K

1T, :>]
K2 _ [s—(m+gb)2jg_s»(m—ﬂ&)' i
- is
Therefore we obtain
- 5] 51
/ 2 ' 2
(s )7 J Ls=(me 4
b Ls (ms i) ££: (- ) (eos © - 1)
t =0 , namely for cose =1 is one boundary.
max

The other one is then

2]

st 12 Wsm(ne

t .
min 5

2658
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This boundsry is a hyperbola. We find its asymptotes by letting

i)s —> +0 3 t —> -0

ii) 8 => +0; t —> -0 as t—> -s+2(m2+/¢?)

The first one is the line s = 0, the second one is the line u =0
(since u=2m2+2fb2—s-t). The hyperbola intersects the line t =0 at
s = (mifk)g, as shows Eq. (I.78). We draw this hyperbola in our
symmetrical representation,ZEig. I.23._7. Then Eq. (1.78) determines
the shaded region marked (§> as the physical region of the s-channel.
The physical region for the u-channel follows immediately from crossing
symme try (see remarks on p. 88) : shaded region marked (:) . It
remains to find the physical region for the t-channel. Obviously,

t = (p +p2)2 implies

1

t =4m

Here the two incoming particles have both mass m and therefore equal

energies E. But this is also the energy of the outgoing particles

t)2

) 2
- = (k'
1+p2) 4B = ( !k

The momentum transfer, s = (pT-k%)z, is here between particles of

different mass. Therefore

s = m2+/4,2—2E2+2 V(Eg—m2)(E2—_}u'2) . cosq? = —(p,l-k% )2 £ 0

Putting cos{ = %1 we

where (P is the angle between p1 and k%.

obtain the extreme s-values (still < 0)

5,2 2

Soptp = -45°+2(m +/L,) -

But 4E2 = t, hence )
2 2 (/uz_mz)i 2

t = -sextr+4(m +/¢ ) - et ;s t 2 4m (1.79)

s
extr

This, in fact, is the same as equation (I.78) for tmin' Here, however,
2

it determines the S xty for given t 3 4m . CObviously this is the

other branch of the hyperbola. From this follows then the physical

region in the t-channel.

Figs. I.23.2, I.23.b, show the physical regions shaded and marked

with f\ " respectively.
OJCRO)
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Fig. I.23.a

Physical regions of s,t,u-channels
in syzmetrical representation (m:ﬁu)
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te Ga?

;\:L = (2%1.1 + 2;,,1

AN

Fige 1.23<D

Physical regions of s,t,u-channels
in cartesian st- plane for m>/u,

2658
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We could have argued immediately :

Eq. (I.77) gives a relation between s and + and cos®. As in all
channels cos9® has a physical significsnce, it is always bound between
1. One value, cos® = +1, leads to t =0 as a boundary. The other
one gives the full hyperbola
- 2
2 2
t = _s+2(m2+}4?> - géﬁ,EELl.

/ bs]

as another boundary. The two branches beleng to two situaticns :

i) t£0; s~ (or u~-) channel. Then the lower branch is
selected aad it determines + | .
min
ii) t >0 ; this is the t-channel. The upper branch is

selected and determines the extreme values of s.

Problem :

10) The dispersibn relation for T’ -N scattering in the model case
that both particles are neutral srd scalar, *akes in the CM system

the form

Re T(s.t) = g[j 1 S

2 2 J
S+o-1 -2}b Sl

[ee]
t T (et 1 1 ‘l
P ds'Im T(s',t)

St —
Ls“ﬂhﬂmiﬁ?%ﬁ Su°,

+

1
T
2

(mt 1)
Zﬁbr a derivation of this formula see, e.g., Introduction to Field

Theory and Dispersion Relations, by R. Hagedorn, CERW 61-1, There it .
is Eq. (108) on p. 78./ -

Derive from this the forward dispersion relation in +he lab. system,

where the energy (U of the incoming pion serves as variable.
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Solution 10)

i) Forward dispersion relation means t = O. This holds in the
CM system as well as in the lab. system.

ii) We evaluate in tne lab. system (p1 = O)

2.2
1

s = (p1+lst,|)a = pk

2 2
=~ — . - 1081
1 +2p1k1 = m+ g +2m ( )

where £2 is the pion energy.

iii) Putting + =0 and inserting s = m2+/o.,2+2m(;o ;3 ds' = 2mdce!

gives immediately

N 1
ReT(w)zé%[w *‘_w+/g]

m 2m

(1.82)

o8]
1 ' 1 1
+?Pg dw' In T(W"') [w'ﬂu + w._w]
M
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LECTURE 9

7) Short considerations on relativistic notation

So far we have avoided to use such terms as "metric tensor", '"covariant"
and "contravariant" vector components. But sooner or later one may run into
trouble with signs if one does not know how to handle these things. They are

also used in many books and papers and in the next paragraph we shall need them

)
explicitly. Since some authors prefer the metric x = t2$§2 and others
2
x2 = —t2¥i , we shall confront here both notations.
I wish to stress once more the following point : scalars, vectors, tensor

operators and such things are defined abstractly as physical or geometrical
quentities. As soon as a system of co-ordinates is introduced, these quantities
will be represented by .components with respect to the co-ordinate axes. This
representation will depend oxn the choice of the co-ordinates, whereas the abstract
quantities are independent : their existence logically precedes the existence of
co~ordinates. If in the following we shall find different representations of,
e.g., a four vector by covariant and contravarisut components, snd if these
representations are different in different metrics, then they nevertheless

represent one and the same physical quantity.
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The "contravariant" components of four vectors like x or p are defined

in any metric

X = (XO’X1 ’X2!X5) = (tr-}?)
] (1.83)
2 -
p = (%0 ,0%0°) = (£3) .

They have therefore as components those with “the right sign". The metric is
defined by the "metric tensor" in the two frequently used notations (®c use that

of the right-hand side) :

g =g}'U/:

= . (1.84)
Fad 0

Then one obtains the "covariant" components by "lowering" the indices

x\/=(x X X, X_)
0’13

(t,-x )

M
il
e}
e
l

—(xo,xxx X =

1723 o
(-t,%)

o
SV

(1.85)

li
i

Here, and everywhere, the convention is to sum over any double index appearing

/LL s Vs _(,3
T, DN, etc., are irrelevant _[s-ee., €agn,y (1988), (1.89_)/. In any tensor (Vector)

any index can be lowered or raised in this way

once up and once down. These sum indices are dummy indices whose names

a'=a g¥-g a8
Mo MS I

v (1.86)
o = g’ ag_,, TV ete.

any metric

(1.87)
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The scalar product of two four vectors, e.g., x and p is defined as the sum

over products of covariant with contravariaunt components ;

o .
PX Ep xﬁng Xfl/:vav. (1.88)

VL,
/

In the two metrics this becomes explicitly

I > ; -
PX =P x} = p'g xg = - PR X = By F= p7‘ Xy = Et-f>5f
5 L 2 > (1.89)
P =p pi=-n P“P/MP =+

Similarly invariants can be formed quite generally, e.g.,

- Jon
cC =a ; B c -
= o g
B =gl G -
The rule is therefors : a quantity is invarisnt if and only if each index appears

twice, once as an upper and once as a lower one.

Care is needed when differentiating., If F is a scalar, then dF must

be likewise a scalar, i.e., a relativistic invariant. Hence

DF
Q}x/w ! D=’

Therefore with (1.88) we conclude

iy A
.@_ =’0F are contravariant

Dx o vector components

(1.91)

I~

UT A .

=(/uF are covariant

OFas /7 vector components.
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That is : the components of the gradient have the

opposite
character to the co-ordinates with respect to which we differentiate

either metric

Hence in
/E =9 (8, L 20 (1.92)
Tz’ ot x Dy’ D .v

M v 40 "0 =r0f*__(’f~,‘» 02 )
.rax AT A A ST

. pe e Ty
M U UX/I,L, \'D y
(1.93)
The Klein-Gordon operator may be defined @LQ) and becomes
/
@2 '(\}2 /(\/2 ~ 2 ’02 ,DZ fa?. faZ
U=-r=+t=t3+5> =rs-o5-735-=3-
Dt Dx Ty Dz 0Vt Dx Uy Oz

(1.94)

A plane wave with positive energy is a physical concept and will be written in
either metric

i(Pr-gt)

9

, 1
\Yp(xv) = E_Z_’JT?.E e (1.95)

therefore the invariant notation will read

Y ) = )3/( oI ¥ (x) = _..3.)..575 P, (1.96)

These plane waves are solutions of the Klein-Gordon equation

qu = ”D/u((\/“q/= _p,u p}Lg‘/= mz\*/ 'Lj\,’z f()}ulalk\,P: _p/bp}*\y= —mzk{/

(1.97)
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Definition A "covariant” equation means nct an equation written in covariant
components, but an equation which is consistent insofar as the
quantities on both sides transform in the same way : namely

"covariantly'.

That is to say, both sides must be scalars, vectors, tensors, respectively.
In particular, any index which is not a sum index, must occur on both sides of
the equation and in the same position ! A non-covariant equation is wrong

(except perhaps in a particular Lorentz frame), Examples :

a/u, b‘u= a is correct
g

a/ub =D ag kO‘ is correct
a}bb’uc%z f)" is wrong
a ch_)\z d) is correct

® A . ¢ .

a b c =4d is wrong, but =g,_ 4% is correct.
- A Y

Problem :

11) The tensor of the electromagnetic field is

P-@/) = : S (1.98)
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"a)  How do the tensors E/‘w", 7 » F,, look in our notation
Iad

" (Xzztz—?(z ) ?

b) | Write the invariant expression for the trace of a tensor and
show that it vanishes for any antisymmetric tensor.
c) Write down the simplest invariant constructed with F.
d) Show that the equations
N v
x"

P

=J

(1.99)
'TJQF’WR- 'bqufL+ ’(VJ‘FVX =0

]
|
|

-
give the Maxwell equations !fj/'bz <§’ ¢

Solution 11)
-
a) F'=g g, ; B, =g pl g _ . Since g
N Y. gv MV S TV

is diagonal, we have always

’

ng ° Flh'b___ F}" g

; F;u,v‘z lFFV|= lF/.wi .

Since gOO =1 and g11 = g2 -1, we have changes of

2 = g33 =
sign as =oon as one index of g is 1 or 2 or 3. Hence

PMY o u=o0

PR u=1,2,3

(1.100)
FMY y=0

=
\F
<
i
P Ny P N

MY v=1,2,3

Therefore, if one looks at the matrix F  then the shaded

parts will change sign :
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|
!
N Vv !
p w, |
» |
|

\ no longer skew

symnetric !

r 5wk, !

Finally, teking down both indices, both changes occur

simultaneously, hence

o 1 1 3
o ' (//I /j/,q{'//;
FPV—->F 1 ;'/‘-/A again sl.iew
pvo I/» — symmetric.
317
b) The trace of a tensor T/ must be written, in order to be
invariant :
v A\
S =gV/LT/L . | (1.101)
‘U.V \"[u' 1 1 " E q o
If T° =-T7 , then since the "names" of the sum_indices are
irrelevant :
v VI v
g, TP:gMTV)L=gV/“T’ —g\,/MTL =0,
AT AN A
. . . TV
Vv and M inter- since g pv gince T/ is
changed is symmetric antisymmetric
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¢) The simplest invariant, made of F, is

F/‘”"Fw = -r,, .

This is - apart from signs -~ the sum of the squaves of all
components. As follows from a)g only the B-components chang2

. . . WV o
sign in going from T/ to F;V . Since each component occuis

twice, we obtain

-3 > -
M FV/A = -(F'“VF)w ) = —2(EAEY) = 2@ . (1.102)
4) "
_ﬁlﬁi_ =] M
DxY
gives for
EX -
/UL=O : %-‘:-:(\3 or divE:?
DR
0B DE_ 0H - > 7

_ . . X z I _ 5 7o s
%_1(2,3). AT AT g ourl = j + o3

wv v Qu At ue
D LV VRS o

is identically fulfilled as soon as any two indices are equal,

this is due to oM< ¥,

Take therefore

g s PV =0,1,2 ete. Zgémember (1.93) i/

/') N 'Y -
ST S SN S
0t ny 0= D

? ’Hau := 1:2’3

—
- - - =0 or divH =0

2658
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8) Precession of the polarization of particles moving

*)

in an electromagnetic field

(a) Equation of motion of a "polarization four vector"

_ Although we are lesaving with this discussion the pure kinematics, we
shall consider this problem here as it is a nice application of some general

techniques, namely :

to find the general invariant (or - in this case - covariant)
description of a motion or a process or something else by
formulating it in a particular reference systém by means'df
the invariants (or covariants) which can be formed with the

given four vectors or tensors.
We used this method extensively in parsgraph 3) (p.26), and in paragraph 6) (D 66)
[on variables and useful Lorentz systens/.

Our problem is the following one :

suppose a beam of polarized particles is given (the polarization may be descrited

" by a polarization vector ‘3, whose length det termines the degree of polar*"edlcn

and whose direction coincides with the direction of polarization; =see below),
Frequently, for technical reasons, this beam has to be guided and deflected by
means of lenses and bending fields. What will be the polarization of the beam

after such a procedure ?

If we consider a particle with spin G , then a measurement of its
- . .
spin component with respect to a given direction e (unit vector) will yield cne

of the 20 +1 possible eigenvalues, namely m= 9, 0-1, T =2,.... =0 . If we

- repeat the same experiment very often, i.e., we apply it to a beam, then we will

2658

observe a certain frequency distribution W (8,m) of the m-values. The

average over this distribution is

- . N
<§%>=3" w@Emrn (1.103)

m:—G.

*)

\n
W
~—

See, V. Bargmann, L. Naichel and V.L. Telegdi, Phys.Rev.Lett. 2, 435 (19
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This is the expectation value of the spin component in the direction 8. The
probability distribution 4y (€,m) can be calculated only from quantum theory.

The main point, however, is that the expectation value follows a classicel equation
of motion. This is the consequence of a general theorem by Ehrenfest (see, €eZe
Schiff, Quentum Mechanics) which states that expectation values of quantum
mechanical observables follow classical equations of motion. The expectation
value £ 8? > may be zero for all choices of the direction —g, then the beam is
unpolarized. (This does not mean that there might not be an "alignment" of

spins - but there is nothing left which could be described bya vector
polarization.) If this is not the case then there exists a certain direction “g;,

in which the expectation value reaches a maximum :

-
max < T.e > = (E;?%;> =5 ; 0

/AN

s <o . (I.104)

We call then s the degree of polarization. We may now introduce the polarization
vector 7
-3 -
s Ee

KERS (1.105)

This vector has an obvious meaning. As it is defined entirely in terms of
expectation values, it must follow a classical equation of motion. We know from
classical physics that in the rest system of the particles considered this

equation of motion is

-
ds - = *)
— . . 06
T = €M %G ; _ (1.106)
where g}ﬁacr is the magnetic moment of the particles considered. For charged
particles, we have

o L. '
g/,LOO’ =85 G (1.106")

but we shall write g/lo in order to cover also the case of neutral particles with
magnetic moment (neutron, A ,EZ?,ZZ'O). In the Dirac theory g=2, but in quantum

electrodynamics, corrections are obtained such that g#2 for electrons and muons.

*)

For an explicit derivation of this equation, see, e.g.,
R. Hagedorn, The Density Matrix (Lecture) p.27; yellow report CERN 58-7.
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We shall now generalize this equation into the covariant eqqation of

“motion of a polarization four vector (axial)

2658

]

S (so;g) H S = (O;E) in the rest system

22 (1.107)
It is not trivial that such a thing exists since 73 is an axial vector and should
be described properly by a skew symmetric tensor, whose generalization will be a
skew symmetric four tensor (see, e.g., below, the tensor F/A Y of the electro-
magnetic field). Also, if a polarization four vector can at all be defined, it

is not obvious that its time component should be zero in the particle's rest

system. &g. (1.107) is therefore en ansatz and we have to try to see whether

it leads to consistent equations.
The rate of change of the polarization ét any instant 1t can depend
only on the following quantities :
i) on the polarization S at that instent t;
ii) on the electromagnetic field;
iii) on the motion of the particle in that field.

The equation of motion of the polafization four vector, namely the generalization

of Eq. (I.106) will then be of the form

g£§ =7 3 T = proper time of the particle [;ée PP. 7 and.147

where 7 1is a four vector constructed out of these three quantities. The
polarization four vector S is already defined by Eq. (I.107). The electromagnetic
field must be written in its relativistic form as a skew symmetric tensor

Z;ée problem 11), p. 1Qi7

o B, §, 5
] 0K
E 0 5 - P _p
y ,
pPY o L 3 2 g K (1.108)
6, -, 0 " R
£, 5, - O
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and the motion of the particle may be described by its four velocity'jgée p.1§7

v=(Y, K?S) ;5  V=1(1,0) in the rest system.

We construct now the four vector Z by generalizing (I.106).

an equation of motion for 8,
We observe first that
-

SV=8v =sv=20
O 0

since this is true in the rest system. Hence

as ., dv
ETEV_ —ba-_-t- .

But in the rest system V = (1,0), therefore

(dS ) _% g
at 'L T dt T T at e

Thus, in the rest system

(%)

R R

(dso ds (c,dv 23
EE R B N T LY

(i.1o9)

We first look for

(1.110) -

(1.111)

(1.112)
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LECTURE 10

We now express these components by covarisnt expressions.

i) All time derivatives will be replaced by derivatives with respect

to the proper time. We write a dot :

& 4 .4
. means R_W-th

In the rest system this does not mean an;\} change.

-
ii) In the rest systenm 8, = (O,SR). Hence, if we use the notation

sF =8, FM 75, = 78
we obtain
- >
S = (SF)R .
Therefore
0y » —
(S)R = (-8v, g}LO(SF)R) =7, (1.113)

iii) We generalize Z_ into a four vector. We observe that ZR is linear

homogeneous in S and linear in F. Further, it contains V
7, the generalization of ZR’ will therefore be a four vector :

() linear homogeneous in Sj

({5) linear in F.
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The only non-constant four vectors which can be formed with S,V,%,F
and which fulfil (ol ) and ((3), are
sy v(st) s v(sEv) . (z.114)

A product SF& is not permitted since V = function of F hence SFV

is not linear in F,
Therefore the general form of S5 =7 is

§=asF+ b V(SV) + c v(sEv) . (1.115)

We now go to the rest system to find a,b,c.

(‘Q) —_ 5 n/l"(i)(l L ]‘» H‘\.’ i C("hr‘\o "‘(‘éi;) .) (I 116)
O R ks Lx a2 R + + -+ \-,v;,R ; A R 3 » -
On the other hand from (I.113)
o ﬁv:l‘; : { s —> '
() = § -5, ) (57, } | . (1.117)
hence, by comparisony--a = gy =~Cc 5 b = -1, and therefore wiih

(1.114)

,é = g}yo.[SF - V(?FV);i - V(S%). o (1.118)

This is the un i qu e - generalization of (I.113). Namely, a,b,c

have been determined uniquely. A common factor d, say, which in the rest system

would reduce to unity, must ve equal to one in . all systems, since a common factor
must be invariant - otherwise it would destroy the four vector character of 8.

An additive term Z', say, cannot exist since in the rest system.;Zf,z (0,0)

R

and this remains (0,0) in all Lorentz frames.

This is another example of the rule stated on p. 27, which more

generally reads :
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if an equation given in a particular Lorentz
system can be written in a manifestly covariant
form (that is : both sideé have the same
transformation property !) which in the particular
Lorentz frame reduces to the equation given
originally, then this covariant form is the

unique generalization of the equation given.

Let us return to (I.118).
It should be ndtéd that we tacitly assumed that our particles had

* a constant magnetic moment;

* no electric moment (of any order) and no

higher magnetic moments (quadrupole, etc.).

If these two conditions were violated then already our equation in the rest system
would look different. It will then still be possible to define the four vector S.
Complications arise, however, if the particle is slso electrically polarizable.
Then no such four vector exists, since alreadybin the rest system only a skew

symmetric tensor is sufficient to describe the polarization.

Ina homogeneous field onehas the equation of
motion for a charged particle (that this gives the usual equations of motion,

should be checked by the reader).

V=-2m (1.119)
in
In this case
S = gjag SF + (I% - gy.o) v (SEV) (1.120)

where the term with the factor

=R Ko

vanishes for neutral particles.

2658
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e

5 gives for charged particles

Putting in gfbo =g

é=-—-[gSF--(gQ)\T($Wi] : (1.1207)
| d

We still have to check the consistency of our formulas :

R 1 - :
- : 4210
} .

SV o)

It

Trhece were the two equations which followed from the definition ol the four
vecvor £, Our equation of motio: makes sense only if it does not contralicw

these equations,' Egs. (I.121) have the following conscquence

. 2.°¢ . . .
SS = -(5°) = (chenge of the degree of polarizaticn)
&7 = -8,

Trea (I.118), we find

a8 = gjs [:SF“ - SV(SFV)] - SV(SV) = 0 = ~(s7)

becavce SFS = 0 (enticymmetry of Fi) and SV = 0, Furthsimore, with (L.

S

& g#otwv_#mwﬂ_(ﬁw

2

il

becavce V Te

This shows that (I.121) is consistent with the equations of motion.
We have thus established tre exristence of a polarization fcur vector and found

its equation of motion.

The polarization has an obvious meaning only in the rest system of ti-
polarized particle, wherers the equation of motion has been éet up in a covarieant
form mainly in order to arply it in the lab. system, where the clectromagnetic
Tields are most sinply descrited. We therefore must study the Lorentz {rans-

formation of the polarizaticn between these two systems.
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The relevant transformation formula is obtained from p. 11. If we
assume in the figure shown there that K is the rest system (R) of the

polarized beam and K is the lab. system (L), then formula (1.10) gives with

SR = (O,zR) replacing x' = (ct! ;jc‘, and SL replacing X :
( -—9-) , B - .}T 5/2 _{i ) (.,. ??)
SL = SOL, SL = { K (\J,‘ «SR, SR {JW 1,122

where {5 is the velocity oi the pelarized beam in the lab. system.

, —
We now may ask : what is SL ?

It is a three vector which indeed has very little to do with what we

feel when we hear the word polarization.

—

~ ) -
N . . . 2 22 2 .
* its magnitude depends on f@ , Since S = s,~3 =-8 1is

invariant. Hence - remember s 1g& the invariant magnitude of

polarization -

R

L ~ 0L ’

hence .

— 2 22 2, (o ac

= - - 3 ‘ .L.12

s s™ g {3 cos (eR) K ( 3)

vhere €. is the angle between f" snd the direction of

polarization in +the rest systemn
\ =2 .
If ¥ > 1 and cos(e N L0, ’sT increases oroportionally

to }3 For massless particles it becomes oco. In this case

we must use another description (see below).
4 -
* its direction depends on 16 as one sees directly in (1.122) :
- : .
if ?J( > 1, the term s’R is negligible against the next term
- d e

which is parallel to A if f:ﬁ S > 0 and antiparallel if

it was < 0. That is : when (3 —> 1 the polarization three

3
vector g
is given by

-
becomes parallel or antiparallel to (3 . The angle
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A

2@ B 2(-—»,») (-é}L‘?))
cos o, = cos SL(‘.J =573 -

SLQ iJ

This is easily caloulated from SV = 5’(SO;§f5)L =0, hence with
(I.123) and (I.122)

2 2.2 2
5 SoLL X s cos (e.)
s O = —=5 = 55>
5 {b (1+(b ¥ “cos (QR))
> ¥ 2 oosz(GR)
cos™8, = . (1.124)

2n2 2

- e
1+ Y (Z) cos”( R)
Introducing the helicity h by

helicity = component of the polarization in the
direction of flight,

we can write
Gyp) sy (o)
PR

h =

= b/‘ S COSGR-

This clearly shows that the polarization of a beam s=hould be
considered always in the rest system, because the polarization

—
s of a beam depends on the observer in magnitude and direction.

-
Spo
the magnitude (degree of polarization) s and direction of the polarization in

The polarization is completely determined by giving i.e., by

the rest system.

, 2 2
Our proof of the consistency of the equations «f motion with S = -s
has shown, however, that 32 is not only iuvariant, but is-even a constant of
the motion :

2 Ly,

2658
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that is : the degree of polarization of a beam cannot be changed by passing it

. through electromagnetic fields whatsoever as long as the inhomogeneities across
the beam can be neglected. [Btherwise ore must split up the beam into a bundle
of sufficiently many smaller beams over whose individual cross—-sections the fields
are constant, and calculate the chenges of directions of polarization for each
one separately. In this case the degree of polarization of the beam as a whole

can of course change./

Therefore, the degree of polarization s 1is irrelevant for the
description of the actual state of polarization and only the directions must be
given. That needs two angles. In most cases even one single engle yields the
relevant information : <the angle between the polsrization in the rest system and
the direction of motion. It describes how transversal (or longitudinal) the

polarization is.

We shall now give an equation for the rate of change of the angle 2
—
~——de

between the polarization SR and the direction of motion {3 . To this end,
we introduce in the lab. system, at the instant t =1t , two unit vectors, one

— = ~—3r o — ——

ﬁ’ parallel to {5 and the other n perpendicular to ‘ﬁ such that SL
lies in the plene spanned by these two unit vectors Z;ée Fig. I.2£7

.
;f>\\\
.
=

path of the particles

Fig. I.24

NEN -
The unit vectors n and 13

2658 (perspective drawing, LT
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—
Then also —%\ lies in the plane spanied by 17 -(the normal direction) and A

-
(the longitudinal direction). Therefore J and n can serve in both reference
frames - the lab. and the rest system - and both are defined in an invariant way

as far as these two systems are concerned. Clearly

L = f"/(ﬁ
.7 =0 (1.125)
—I?IQ =‘22 = 1

With these unit vectors we can write (I.122) - remember @ = &j (sq, /3) -

S = (s L’S ) = s( [55 cosQR, cos@R +n sind + 12 = cos@R) .
With (52 2 62—1 we obtain
cn e
o i > _ . caien (0D
S = s((ﬁgcong, K-ZCOS@R +n 31n©R) = s-cos@R ({/’sx,ﬂy) + s ‘oln@R (0,n).

Introducing the four vectors

L= (pg, Ly)

N (1.726)
N = (0,n)

we can write

*
§ = sLeose, + sNsino, (1.127)

This is also the correct representation in the rest system since there we

obtain
-

i -
S, = s(o, 1 cose, + n s1n@R) -
Indeed : by applying the Lorentz transformation Lab —> Rest system, L
and N are transformed into what they should become, namely

~(0,L) ana 1w =(0n).

LR R

>
Therefore the angle between S5 and L is the same as between ng and £ .

2658
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The particular properties of the four vectors L and N are :

I = 0° = -1
—
LN =LV =0V =0 ; V= () py)
hence : (1.128)
IL = W = O
L =-1, .

We introduce (I.127) into the equation of motion (I.120) in a homogeneous field :

m.

- e Q iy . hd - . —
s [Lcos R + Nsnl@R + @R(NCOSQR Ls1n@R)]

(1.129)
s [g }A,O(LFCOSGQH\IFsin@R) - (g - %)V(LWCOS@R+IJF“JSin@R)] .

]

Using (I.128) we can solve for & by multiplying by N from the right :

L - 5 : .
LNcos@R 2 cos@R g/uo LFN cos@R
The rest annihilates because NFN =0 (F is antisymmetric). Hence

@ = I bd ( 3
L = L gv,}x,o LFN (1.130)
(multiplying by L would give the same).

Now, the term IN, is easy to calculate : from (I.126) follows

" - '..;. .
LN:—LN:K.K_ﬁz—Kn )

-
On the other hand, writing V = (¥, L [Y)

It
5
(‘Q
~
’—«L
O<
+'
o
o<
=
it
i
=
sé
s

’

hence
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Introducing this into (I.130) we obtain (AFB = -BFA !)

éR = [E% V- g/,LOL]FN. | (1.131)

We have with (I.108) and (I.126)

-Ev gl = -(F leg) - ef, (BY» LK T ,ﬁ(l;l - gjuy)) -

. 4o de
Inserting this into (I.131) results ['wrbhg - E—-Ff =ga-,§ 1

R
de - > re ->
2% = En)ep,p- (3) + (gpo - DL Hn (1.132)

This is valid for any particle with magnetic moment g}LO(T and charge e. If
e

% n . . L .

he cherge is # O, then with & o = € 5 e obtain

o
d—;—_g@

_2lam <_.€_2‘_>.(5_1.X_ COR Al e

Zﬁémember : QR is the angle between the polarization s and (3 measured

—p
in the rest system, E and H are homogeneous fields in the lab.

systemj
. de. ' ‘

Notice that I0 is independent of the degree s of polarization !
The case of an electric dipole moment can be described similarly. [See paper
quoted on p. 105_._7 For irhomogeneous fields one must go back to Eg. (I.118)

It should be mentioned that éR is invariant in thé sense of the
remark on p. 27, hence it must be possible to express it by invarients only.
Indeed, Eq. (I.131) is an invariant definition. It is useful in some cases to
combine these equations with (1.129), we therefore list below the various four
vectors appearing on the r.h.s. of (..129), explicitly written in form of three

vectors :

*
) See also : R.H. Good, Jr., Phys.Rev. 125, 2712 (1962).
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>> > P \
IF = -FL = 5 (B- £, BE+ LxH)
e R
NF = - = (len, nxi)
o S Al m &V . . -
VF = -FV = X (FE , 1 +§‘Z~!ﬂ ,vfr.i) == -“%; in homogeneous fields 7 (Tll)
.%- s
LFV = -VFL = &ef
— > g
NEV = -VF =  (B-n + 90 { )

1

\

For th: proof of these equations and somz exsmples of applicaticns of Bgs. (1.732)-

(I.134), see Bible, The General Epistle of James 1, 22, and Problems 12-15 belcw.

12) Verify Bgs. ( I.134). The solution ip atraightforward snd follcws

from the definitions.

Problem :

13) Give a full discussion of the e vations of metion fox the case of
q

a homogeneous field such that Ix{=HxL= 0.

Solution 13)

i) We have first to check whether the ccadition Il = Hxf=0 is
conserved by the equations of motion of the particle. Indeed,

with (I.134) and 7 =~ = FV, ve obtain

. . - - e Y s "?‘ -
7= T ey = Y (FBE, B

3 2
e = Y- \ [ N . . . .
Writing E =€L we cee thot A4 = 0. All higher derivatives of
— ndy
f/ also vanish. Hence f is ceonstant and the condition

= -y
Lx® = L« =0 is conserved.
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ii) Now (I.132) tells us immediately

., )
3T -
1ii) & however is not zero. We teke (I.129) with & =0

s LL cos@R + N Slﬂ@R]

Uie
Il

it

' -
-
s (KE Ecose_, ‘ﬂ)zgn% EQ/COSGR + g/u,o‘axﬂ sin@R) .

Here (I-134) was used to write down explicitly the r.h.s. of -

Eq. (1.129). Comparing coefficients gives

Lo%E (y, Py) = SEy

“m E ’(55 T m

which gives Vi = E E = —Lﬁ, as it should be, and
N EN
=g/‘~on .

These equations state that L changes because the particle is

accelerated and that N precesses in a left screw and with
—
constant angular frequency around H :

2658



121,

Problenm :

- e RS
E=03 H(ny:ﬁ) = A in the same way as in the

14) Consider the case 5

previous problem.

Solution 142

i) We first check whether these conditions are conserved, using

agein the equations of motion of the particle (1.134)

T o (. gy Lpp ) = Sy lo, )

It follows

- —
which means that {  snd n rotate with angular frequency

d}T el \
1Tl =7 =
—
in a left-screw around H. N
i -

{

v’f ’

;v'

?, ,///]
\\\\\_////

Therefore the condition is conserved. This is the well-known

behaviour of a charge moving in a constant magnetic field : it

goes on circles with angular frequency C«)o (Larmor frequenoy).
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ii) The equation of motion (I.132) for o, egives now

de

= (g, - =) H =

7 = (84 - 5 -1 -

Big.

(

[N fojad

That is, the angle between the direction of motion and the
polarization increases (or decreases) with constant rate if
g 74 2. Note that this is independent of the velocity of the

particles ! The particles move on & circle and turn around

once in the time T = gli‘_ =27 IE-;(- « Therefore
- o el . .
d@R o
A@R = QR(T) - @R(o) =T+ =& = gvré/(.z. -1) .

. - ‘
Since after one turn £ has its old position, this A4 @R

is the cnange of the direction of polarization per turn.

See above figure (g > 2 was assumed).

This fact has been used to measure the g-factor of the /U/ .

Further examples are found in the reference given on p. 105.
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Problem :
15) Regerding Bq. (I.132) in the case of a fictitious perticle with spin and
with e # 0, but without magnetic moment (g=0), one sees that

% e [Ta = —=-
m L ]

d.t — + } « Hxn

(>
Physical intuition tells us, however, that the polarization should not

change if there is no magnetic moment. Show t.at there is no contra=-

diction.

Solution 15)

Since @R is the angle between the polarization a;r;d the direction of
motion and since we expect that the polarization & R = const, we
‘presume that -a-g describes the change of the direction of motion with
respect to any fixed direction. We calculate everything in the lab.

system.
. _d d
i) From (I.134) we have ( ' = = _a.%.)
ey =¥ > -~ .
T= v = — (BRL, T+ pla) = ¥ (x, Pyl +LIPYY

Further

- - F
I%(E+[L’><H)= {3§é'+§1 (B L)
TR S e
§ =thE~L(E£)+{Bﬁ>&{}.
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ii) At a given instant % we take in the lab. system a constent

four vector A = s(to). Then

%

=
-

it

‘L;bds©'+:N sin® @(f;)’

A' = L'cos® + N'sin® + ©'(N cos@ - L sind) =0 .

il

Therefore by multlpllcatlon by N ZTée Eqs. (1.126), (I. 12817

. L
o' = L' = - 5’n’£' .

-
Taking the ' Jjust calculated, we find

>3 -
ml A .
dep

which coincides with It as stated in the problem. -

(b) The case of mass zero

Qur polarization four vector
”)-}__> --‘r

e
= Cfogr sy vy Pog)

is meaningless. On the other hand,

FUmJ’

does not work since § —> o and since

on p. 114 I said that "polarization'" is defined only in the rest system. Clearly,
our whole concept fails to apply to particles with mass zero. And yet particles

with mass zero and spin # O exist.

We may solve the problem by analogy with the four velocity

-
V}u= (5 ,fﬁx) is also diverging if we consider m —» 0., There exists, however,
another four vector, which is proportional to V and does not become meaningless

for m —> 0, namely the four momentum P = mV = (nlx m(bk) (e ,“5).
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Let us multiply S by m and consider the four vector

—3 = 2 e
wl” = nsl = (mK(j} S ms + (5 EZS:T (5 R ' (1.135)

Let us forget abcut the meaning of ?R and look at [SR‘ . Los( sR\') as a
constant s. Then '

W}bz(mx.—/%s \;c K+1 /3)

This W.}u transforms as a four vector, no matter what origin the constant s
has : if we give this expression to somebody and tell him that this were m
times the polarization four vector of a particlhe with four momentum P, then
he is able to tell us how this four vector will look in any other Lorentz system.
Thig is sufficient. As long as m # O he cen even transform to the rest system

and discover the physical significance of the constant s.

But now we sllow the mass to go to zero. Then, with 5/ —>
- -
-7

-
W}k(m —0) = s(&,ﬁi) =8 P“’(m = 0).

We may again call [s‘ the degree of polarization and find

m=0 2 W o spH
p—_
F e W It
i = = = .
W V‘TP, W ij P P/u 0 N
I.e.y, since W'}L and P /Y are four vectors, s must

be an invarient. The direction of polarization is
alvays parallel (s > 0) or antiparallel (s < 0)
to the direction of motion and the magnitude s is
the same in all Lorentz frames : tue helicity is

always % s.
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There.is. therefore no need for an equation of metion of: the

polarization.

Our representation bf“the-polarization of massless particles used
here is different from that for polarized light by means of the Stokes. _
parameters ZEée lecture on Density Matrix, CERN 581i7, but it is also applicable
to light quanta.
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LECTURE 11

(¢c) The relation of the polarization four vector to the angular

momentum tensor

We defined S as the expectation value of the spin of a beam. It

therefore follows classical equations of motion. This suggests to t:y to establish

a connecticn between S and the angular momentum of a classical system.

Corresponding relations will then exist between the operators.

We consider a closed system of ¥ spinless classical mass

points with co-ordinates and momenta
}w ~>
Xi = (t, Xl)

pi}”= (El.,p—?i)

1

i=1¢0-1\] .

The angular momentum of the system is the skew symmetric tensor

ALl T I 1.137
M "';l~ X b, - % P (1.137)
i
*)
The time components are
< k
A T o (1.138)
*) o
Notation : Greek indices O...3; Latin indices 1..3.

The indices i 1labelling the mass points
will be suppressed wherever possible.
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Introducing the total four momentum

po S = (ZE,ZD) (2139)

4

and going to the rest system (P = O), we obtain
ok — Kk
W)y =-(2 xg); -

From angular momentum conservation, it follows that this quantity is constant in

time. We define now in R +the four vector (with constant space components 1)

LT S s
&) = (%, S Xiéi)R e

P 1

Slnce R 1s deflned 1nvarldntly~[T%art1ng from any Lorentz system, the condltlon
gl,p =0 leads always to the same system R (up to a spaoe rotatlon and. trans—
latlon)/, the four vector (X}L) is deflned 1nvaf1antly and may then be 2
transformed to any Lorentz system. We cell this geneval X the centre of grav1ty
(ca)

2: 3£ L : e
L= L (=) (1.140)
: 2. R

The notation means that (X}U) has 4o be Lorentz transformed to obtain X/,

X}L= L » (x/”)

This X ¥ is different from wnat one would obtain by Lorentz transforming each

X, r and by g and constructing

,') in the new Lorentz frame. There-
fore we had to define X}b in this compllcated way to make sure that it is a
four vector. The word "centre of gravity" is chosen because for non-relativistic

particles we have

’22:2%. “ﬂ§m
- —.> — .
>e /r cm

v . , v
Now in the rest system R (where P = 0) we may introduce new co-ordinates

1 . . e e Y o Y s
X, e by measuring all distances from the centre of gravity (X' )P Zeee figure/

SRR
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origin of
the CG frame

origin of
the R freme

’.‘V(Xi)'R =X, + (Xi)CG ‘ (1.141)

Note that the (Xi)CG have the time components zero. The momenta remain un-
chenged. Then the engular momentum tensor becomes in R

(u?

<Y Yy v
ﬁ=‘ZﬂJQ-X%MR=Z:&% -QJ%G+&ﬁ>—X%ﬁR

(1.142)

Y

and the general M}L in any Lorentz system is found by a suitable Lorentz
v

transformation. This (MF )R has remarkable properties :

if we imagine the origin in R shifted to X_, then the term
A N £ e
P -XP vanishes since then P =0 and X = 0.

Therefore the term

—

P ol
2 (@D -xp )CG

represents the intrinsic angular momentum of the system. It has no time
components :

N ok k o
L.;(X' p -X \U)CG =0

gince Zpk'=0 and Zxkg_ =Xk 'ZE. =0
2658
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We define now

Iy ) v
/A v — v ;“' = .lu
(1.143)
A
(x'p -xP )R = (L )R
Only the three components of (S rv )R are different from zero : (823,331,312)R

and they can be considered as the three components of an axial vector % We

shall come back to this below.

Now by an arbitrary Lorentz transformation :

wh o s P nPV e s M Y C xR (1.144)

v
We have thus separated in a covariant way the orbital part L # from the

intrihsic part S M of the total angular momentum Y [s-ee figu.r97 3

We note one important covarient property of 3 W V, namely

v

stp =0. (1.145)

- -
This is true in the rest system R, because there SOk' =0 and P = 0. But
if the four vector S}WPV is zero in one system, then it is zero in all

Lorentz systems (all its components vanish).
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Bqe (I.145) is an implicit definition of 57, but it cannot serve
to find S/ once MM is given. On the other hand, since we were able to
define S7Y in a covariant way (although in a rather complicated description
involving words), we also should be able to define it by means of a covariant

formula (remember the remarks on p. 27).

Roughly speaking, we shall do something like this : by multiplying
'
" by P, we obtain

’QV
ut e, =1"p,
since

sPp, =0,

If we now could undo the multiplication by P 6 , then we would have projected
out the LM part and then S*'= u* L, Actually it is not quite so simple

but we can do it in two steps :

i) we introduce the completely antisymmetric tensor & Jav o of rank four

+1  if (AVPT ) is even

3

aves = (1.146)
' -1 if (Pvgr) is odd .

"Even" and "odd" mean that ( Ay es ) is obtained from (0123) by an even or
odd number of transpositions respeéfively. Consequently : 2 Jv P is
zero if any two indice"s‘are equal; 5/“,?( = _gl)sﬁ/-t (cyclic permutation).
‘ /‘44)')

Furthermore, raising or lowering one index (by means g changes the sign if

thet index was 1,2,3 ; it does not change the sign if that index was O.

With this & Jvgs e define the (pseudo-) four vectors

i w L ‘ :
A e L R T

¢ p's §5

(1.147)

?

‘ e
SP’=%W)L : mE\(pZ .
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The ‘second member of the first equation is ‘true since-the orxbital part drops out :

Ll AL s {«-}L Vgo,P v(Xng_ XTPQ) =05 "

VLoV

each term vanishes because of the antisymmetry of & . The phys1cal 51gn1f1cance

BN i
of W ﬂ/ is easily found by going to the rest system where P =0 and P° H

(WO)R = "12"60080- (P SO‘)R = 09

because of the antisymmetry of E: .

1 o 23 o 32

'(W1)R= (z€ - 023 5™+ gg 032" P§T)y =m (523)

similarly :

(%), =n(s”),  and (W), = (s,
Hence
'(wfu)_R = n(0, 523, s 312)R = m(s’*)R - n(0, ?R) . (1.148)

A‘We see that in the rest frame W)b reduces to a three vector m SR’“ whose three

components are equal to the three non-vanishing components of (m tlmes) the

1ntr1n51c angular momentum tensor. In this partlcular system R the 1ntr1nS1c

—
angular momentum can therefore be described by a (pseudo- or ax1al) vector sy

| (s1m11arly as the magnetic fleld can be descrlbed by an axial vector) ; Now, if

2658

we go to an arbitrary frame, W')b transforms as a four vector and S /t“ as

a tensor. They are different things indeed, but in R '"they touch each other"

in the sense of Eq. (1.148).

If we allow, in our thoughts, our: system of N spinless particles to
shrink to almost one point, so that we no longer can distinguish its N

constituents; then it becomes what we would call a:particle with mass m,
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Vo o
momentum P and intrinsic angular momentum or spin S’u Zﬁhe square of the

!5;!2 - =% sﬂ] It should

be stressed, however, that we are playing here with an analogy only : by this

magnitude of the spin would be the invariant 82 =

kind of argument we never would obtain half-integer values of s, even not by
invoking quantum mechanics., But quantum mechanics provide us with an additional
kind of angular momentum, namely, the spin which, as a kinematical quantity,
behaves indeed as our S’wv, in particular it holds that S}LVPV= C. Zéée
remark below Eq. (I.168)/.

But it can no longer be considered as coming from the bodily rotation
of N mass points clustered together. Therefore, from now on, we shall consider
S}LV as a really new thing which cannot be understood from analyzing the
"structure and rotation" 6f the‘particle. If, e.g., one considers an electron

as a rotating sphere of uniform mass distribution, then its moment of inertia is

2 s
T = 5 mra, its angular momentum is s = %‘ﬁ =(J T where @ = % is its
g gil
angular velocity and v is the velocity at its equator. Then v = g 5= % o

. e . v 5%hc 5 o . .
utting » = one finds - == =% o 137 2+ c, This contradict
pitting ¥ = oo STiZTg T Ty e THe coniaficte

relativity !

Clearly W}L and ;S}L are identical with our previously defined
quantities because they are the same in the rest frame. However, so far this is
only true as ldng és‘wé‘deal with one single spinning particle. We shall remove

partly this restriction later on.

Y
ii) we see that in Eq. (I.147) the intrinsic part S P s projected out
of WMV, 4nd now this equation can in fact be solved for 357 in the following
way : '

S _;155 s Bl , (1.149)

&

which is the inverse of (I.147). Since this is a covarisnt equation, it suffices

(¢]

. —
to prove it.in the rest system (P =0; P =m). Indeed :
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12)

cogaley o 12 3y 1 12 J2y

_(° )R‘_* =& o (B, = 25 03 men(s)y = (8
Ok 1 ok oAt o o 0k o
(b )R == £ o0 (p W >R,,_ 0 because £ = 0.

m ot

And now we only need to introduce (I.147) :

Wl

e A S’G"

into (I.149) to obtain

v 1 v [5 o 7 P MV T
. , p (1.150)
——1#1, 1 ‘}A.V . fb » % A }},V‘ ) P Ph' Al
20 3E L8 PR OSE o(( 2 A L
o 2m O AR S (b 2m |
po |
where Z e is the desired projection operator. Indeed :
s™p, =0
o I s
~ since € of® T T PP P, =0 because of the asymmetry of E .

2658

We have accomplished two things : we ‘heve split the angular momentum
v A e
tensor M i for one spinning particle (or else for a system of spinless particles)

in a covariant way into the intrinsic part S MY and the orbital part
v v v '

L’kL = M',~ - S,.t . And we have shown that the intrinsic part is that part which

in the CG-system survives and there (as well as in the rest System) has only three

components 3 3, 83 1, 512 different from zero.' They can be used to define~a new

(and different) quantity‘ : the four vector (SV)R = (O, 823, 351, S12)R‘-’

this four vector is identical to the polarization four vector (defined earlier)

and

as well as to the S/'V defined by Egs. (I.147). There is one restriction,

however : this is only true for one single particle with spin.
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We shall now loosen this restriction somewhat by going one step further

and considering a system of s pinning particles with

(" momentum p

f },l.
mass m = \|p p)M

(1.151)

. 7R
co~-ordinate x/

v -V
total angular momentum M° = xﬁp - Xupkt+ S/LV.

We must, however, forget that the spinning particle was obtained from a system of
spinless particles by a limiting process and consider the properties in (1.151)

as those of a particle with true spin.

Suppose we have now a system of N such spinning particles (with an
index i = 1...N labelling them) and let us consider the total angular momentum

of that system :

- un B S o BN A SN Y T
n= 2 W= D> (Xipi - x.pl+ 8] ). (1.152)
i i
This can be written in two parts, namely
| — IR
M= >0 L 28
i i

but this does in general amount to nothing because we are not able to disentangle
these two parts unless we know the state of motion of each particle separate}y.
Why ? The answer comes from our previous considerations on a system of particles.
Nemely, we can go step by step from Bq. (I.137) to Eq. (I.150), but applying
everything to the part

,MV_ ] !LV v}&
oo o= 2 e o-xp)
i

i

only. The result is that already 2{3 Liﬂv gplits into two terms :
i
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- [TV }J«V, v r,&{:"\} v /wl . fa..v
2_ Ly ELT S iy mEE X P S
5 : .
< : . A . . . X
where S is that part of M/, which comes from the orbital motion of the

orbit
particles relative to the centre of gravity X, but which joes not contain

contributions from the spins of the particles. It is, however, also an intrinsic

‘angular momentum of our system, aithough only a part of it. Therefore

YA Mo s v
vz# 2 LM+ 7.5 M YA Y N Ve } (1.153)

L orbit spin

JTRYS

where ;Ed F?

spln

We see : the intrinsic angular momentum is now

"u v iwv Y. Jad A%
st s w5’ 1 -n/l Y - x P’) =/ -1, (1.154)
orbit spin | .
-)
. N : e f L M
If we con51der the system as a whole, then M , X/, P/ are known and

v wv v
therefore ) % + S . can be defined in a covariant way. but net S_ .
o _orbit spin | spin

separately. For that it would be necessary to know but this requires

/t
orbit’
|1
the knowledge of each xié and p' (1 = 1o 1)s oepar@tlng covariantly the
. L Y
true "spin part b;;in off from the angular momentum M’ of a system meens of
course to accomplish this separation in using only *the four vectors and tensors
I4,v }4, L L i . . .
M , P/, X/ opertaining to the °v°+em as & whole. In this sense it is not

generally possible to define the spin part of a system of particles covariantly.

. ' iV
Our projection operator 2>, ¢e  from Eq. (1.150) would fail here
.even to project out S,uv_ S sK L Namel
At prog ) u ‘ ——‘Uorbit‘_*- Ospin' Namely @
. iy oy MY | ?S’ '-7}“’. oo ) MV T
Z” MQ=C’_ Lo+ 2 R st
s - o , §¢ orbit ¢ spin
+ (1.155)
f!v
The first term is zero and the second term equals bo?blt’ both because of the
o -
properties of 2R Zﬁee after Eq. (I.147), and the derivation of

2658

— AV -
Z_‘)‘L 96‘ _/. Therefore
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<

orbit T A {v bspin

AL S N L (1.156)

The last term is, in general, not equal to Ssin.: . Namely, contracting it with

Pv gives

AV ? )
(Z gcf spln BU =0
v — -
since Z}‘ gchV =0 [see after Eq. (I.150)/.

On the other hand, since 3 "m{ = Z ' S,"w , we have
spin 7 i

" - " : S w ) )
SSpin P, = (Z et ) E # Z i 'pi,v =0.
i

i

(1.157)
Therefore in general

Z.’“ 37 As

?v spln spln

g v
2_, gGMf £t o (1s8)

Vv
s™p, 4o

The reason for all this is that it is essential that a Lorentz system
Y] —
exists, in which all time components of M-’U' vanish, _[_This ig so because the

operation

has in the rest system the effect of annihilating the time components dee (I.148_l7.
This is, of course, permissible only if they are zero anyway. If not, then the

following operation % E,PJ o P?W , which cannot repair the damage made to

.‘:39 , will not restore the old quantity __/ Such a system could be shown to exist
in our consideration on a system of W spinless particles, it was the centre of
gravity system. However, in a system of N spinning particles, no such system

exists in general; writing namely :
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v v N
wt oM sl s/
orblt spln
one sees that one can achieve L’u'— 0 and S orbit =0 by going to the (G-

system. But in that system (s will, in general, have time eomponents

spi n)CG
because

N B
My
S,
( spln el :i: ( J )CG

J=1

and the individual (SjP have time components. Namely, the time components

y )CG

of the S!L - vanish only in the individual rest system Rj of the particle J

and the value (Sj’u'v)CG is obtained from (S;u,)R. by a Lorentz transformation
J

to the CG-system - by which time components are generated. As each particle has

then, in general, its own Lorentz transformation, there is no hope that in

N
<M v
(8)

=1
these time components should cancel ;  this is expressed by Eq. (I 157). Therefore
there is in general no Lorentz system in which the time components of N[}b are

%)

zero and therefore our procedure does not work . This is a consequence of
considering the Sfuv as the true spin, which cannot be reduced to

an expression of the form

= MtV -V M
25mn - §iTCi

b ,
over the internal co-ordinates §§T and momenta ﬂfi of the particle., Otherwise,
of course, we could consider this as a cluster of spinless particles again, sum in
the old way over all particles of all clusters and have the old situation in which

. - as we know - the projection operator works.

This is, by the way, the reason why one cannot (1n general) descrlbe the
magunetic field by a four vector : there does not necessarily exist a v
system where 2ll compoients of the electric field (= the time component r )
vanish.

2658
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Tt seems therefore that everything we have achieved bresks down if we

consider a system of spinning particles.

Luckily enough, there is an exception : it still works if we know
the individual momenta of all N particles. This happens in two most important

cases 1

i) if only very few particles are present, e.g., in the decay M —> mf/u

or similar situations.

ii) if we have a beam of like particles with equal sharp momentum then we
know in fact the individual momenta and they all are equal. Therefore
in the rest system (Sagz;t)R - O because there all particles are at
rest and no orhital motion around the origin remains. Finally, as all
particles are at rest, also the individual S;uy have no time
components and thus their sum (fg: SjMU)R has no time components

either. Hence in the rest system

(1), = (@)

R spin’g

S (sM ) =@M (285
J

and, by a general Lorentz transformation,

W U v
wh’o P s MY (1.159)
spin
Zégig;t = 0 holds in every Lorentz system, since it is true in the
rest system;7 Indeed, our projection operators work here
w) M p o o—w.p slp =0 | A\
spin Vv 3 v

because the particle's momenta are equal :

Py v
P o= - and S. D =0
v N i (1.160)
—_ UV ?Q’ /U.\I

this is true because the P\I in the

projection operator can be written N-pV.

J
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> gl fd o MV
Then & ?g.as a whole annihilates the L part of M

and, when it is written as /s se (1. 1BQﬂ/

— MV 1 Y Aoy N
s =TT ,,/:, e vop
§9 on‘m I CHIRIS

. s o MV \
it clearly reproduoes each individual oj' and thus also

(#V '—‘
spln ;id “

This shows that in the importsnt case of a well-defined beam of like
particles (or else for a plane wave state descrlbln a spihning particle) it is
indeed possible to separate in a covariant way the true spin Uart bé in of the
total angular momentum from the L)uvmpalt“ In this case S it and Wf'" mS’  as
defined by Egs. (1.150)'and (I.147) respectively, can likewise be used to describe
the state of polarization of the beam. Then 5% and W’ are identical with
the quantities defined in sub-sections 8) \a, and 83 ( ) above’ Zgég;, Egs. (1.122)

and (1.135)/d

v
It should be stressed that neither L-MV nor S;;;n is conserved, but

only u!

Since a beam of like particles with sharp momentum is described in
gquantum mechanics as a plane wave state, we expect also a close relation between
S py and S P and quantum mechanical operators. We shall establish this relation
for the case of Dirac particles Z}br details, see, e.g., .Schweber, Relativistic
Quantum Field Theory, 1961, p. 74-35, In the same book, p. 18-53, one also finds
some further information ebout our polarizaticn four vector me} whose operator
counterpart plays an cssential role in the classification of the representations
of the Lorentz group and thus in the clagsification of all possible types of

relativistic free field_/.
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(d4) The correspondence between the polarization four vector,

angular momentum and { -matrices in Dirac's theory

We choose that particular representation of the ) -relation

U (1.161)

in which the components of the spinors split in a natural way into two large and
two small ones in the non-relativistic limit :
o oF 5 <o 1)
H ‘-5 = - 5’ i
(-Gko) > 1 0
0 -1 10
; o (
i 0 0 -1

(1.162)

il
il

1 0
zszs( ); £ = -y

q
—
fl
P
- )
o 4
e
o
il

where the § 's are of course 4x4 matrices, the ¢’'s are 2x2. In this

particular representation, one obtains for free particles the spinors

Vi) = ¢ . ulp)

o -
—
oo
~
1f
o
N

‘ (7‘11.163)

1.14 /

A u 3
where u1(p) and u2(p) are arbitrary. Obviously ('u3 ) vanishes if 35 —>0.
4
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" We now consider two classes of operators

Z)”E iKSb/ M

. (1.164)
o= gt 8N
One shows easily, by means of (I.162), that
ZELO ( 0 1 —k G'k 0
B U N
. (1.165)
0 o . " 0
O'Ok=i i ; O’Jk= 0 (jk€ cycl.) .
g 0 0 o .
We define now
EAERGRPII TS | D P =Yy
(1.166)
K= (o Mye G -5 ¥

Y}
and show that they are identical with our old S K and S 2 respectively.
Since the above expressions are manifestly covariant, we only need to check the

assertion in the rest system, where u_, =u, = O.

3 4
. . 0 ok . u1
Since, according to (I.165), > and @ both interchange | u,
with (‘13) , We have '
ug

00> o <s%> o0,
R R
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w K 21 Tiq u-
mﬁmeeZ_kam Gﬂ&domtmwNMwe(%)wmh(ﬁ),tms

k .
SN S ¥ K
<2 7 (u1u2 o

]

it

’\
S i) o (1) e oS .
43 ;>R uu = (3k{ cycl.) .

Hence

AN
4
o,
\/
it
O
N

(1,167)

AN
@)
-
Vv
1
/\
qu
\J
—

,:
That is : :n the rect system S/ and s/ zeduce (in a lcose sense) To our
0ld quentities, Therefors this is true in 211l Iorentz systems and we have

establiched the corresronlence

. RN 4 L VANDY 2
37 e T =5V - 808)

Lo — ) (15168)
ST g 57 e

1

Eq. (1.167) alsc chows that the sonsriion that for the true spin the relation

v S . . .
S}L P, =0 holds, is at Tcast falTilied for spin 4 particles.

) /“- )
The opzrator ;;d is clogely related to a covariant projection
. . . y . .
operator Pt with the preperty tlat for any spinor 4 , the projected spinor
i
Y .
M’t:P;K (1.169)
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—
has the expectation value of the spin pointing in the direction t, namel:

<523: 6319 0'12 >

—>
parallel to t. Here t is a four vector

¥ = (+°,3) (1.

whose zero ceomponent is chosen such that

}b = ‘
p/t, =0. (1

The projection operator then assumes the form

P, =31+ 3/ 6, - T?E_') i (1.

For further information see : Hemilton, the Theory of Elementary Particle:
1959, p. 124-129.




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

